The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114121 Expansion of (sqrt(1 - 4*x) + (1 - 2*x))/(2*(1 - 4*x)). 39
 1, 2, 7, 26, 99, 382, 1486, 5812, 22819, 89846, 354522, 1401292, 5546382, 21977516, 87167164, 345994216, 1374282019, 5461770406, 21717436834, 86392108636, 343801171354, 1368640564996, 5450095992964, 21708901408216, 86492546019214 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Second binomial transform of A032443 with interpolated zeros. a(n) is the total number of lattice points, taken over all Dyck n-paths (A000108), that (i) lie on or above ground level and (ii) lie on or directly below a peak. For example with n = 2, UUDD has 1 peak contributing 3 lattice points--(2, 0), (2, 1) and (2, 2) when the path starts at the origin--and UDUD has 2 peaks, each contributing 2 lattice points and so a(2) = 3 + 4 = 7. - David Callan, Jul 14 2006 Hankel transform is binomial(n + 2, 2). - Paul Barry, Dec 04 2007 Image of (-1)^n under the Riordan array ((1/2)(1/(1 - 4x) + 1/sqrt(1 - 4x)), c(x) - 1), c(x) the g.f. of A000108. - Paul Barry, Jun 15 2008 From Gus Wiseman, Jun 21 2021: (Start) Also the even bisection of A116406 = number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(3) = 26 compositions are: (6) (33) (114) (1122) (11112) (111111) (42) (123) (1131) (11121) (51) (132) (1221) (11211) (213) (2112) (12111) (222) (2121) (21111) (231) (2211) (312) (3111) (321) (411) (End) LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 G.-S. Cheon, H. Kim, L. W. Shapiro, Mutation effects in ordered trees, arXiv:1410.1249 [math.CO], 2014 Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3. FORMULA a(n) = Sum_{k=0..n} C(n, k)*2^(n-k-2)*(2^k + C(k, k/2))*(1 + (-1)^k). a(n) = (A000984(n) + A081294(n))/2. From Paul Barry, Jun 15 2008: (Start) G.f.: (1 - 4*x + (1 - 2*x)*sqrt(1 - 4*x))/(2*(1 - 4*x)^(3/2)). a(n) = Sum_{k=0..n} ( Sum_{j=0..n} C(2*n, n-k-j)*(-1)^j ). (End) a(n) = Sum_{k=0..n} C(2*n, n-k)*(1 + (-1)^k)/2. - Paul Barry, Aug 06 2009 From Paul Barry, Sep 07 2009: (Start) a(n) = C(2*n-1, n-1) + (4^n + 3*0^n)/4. Integral representation a(n) = (1/(2*pi))*(Integral_{x=0..4} x^n/sqrt(x(4 - x))) + (4^n + 0^n)/4. (End) a(n) = Sum_{k=0..floor(n/2)} C(2*n, 2*k + (n mod 2)). - Mircea Merca, Jun 21 2011 Conjecture: n*a(n) + 2*(3 - 4*n)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 07 2012 Conjecture verified using the differential equation (16*x^2-8*x+1)*g'(x) + (8*x-2)*g(x)-2*x=0 satisfied by the G.f. - Robert Israel, Jul 27 2020 a(n) = Sum_{i=0..n} (sum_{j=0..n} binomial(n, i+j)*binomial(n, j-i)). - Yalcin Aktar, Jan 07 2013. G.f.: (1 + (1 - 4*x)^(-1/2))^2 / 4. Convolution square of A088218. - Michael Somos, Dec 31 2013 0 = (1 + 2*n)*b(n) - (5 + 4*n)*b(n+1) + (4 + 2*n)*b(n+2) if n > 0 where b(n) = a(n) / 4^n. - Michael Somos, Dec 31 2013 0 = b(n+3) * (2*b(n+2) - 7*b(n+1) + 5*b(n)) + b(n+2) * (-b(n+2) + 7*b(n+1) - 7*b(n)) + b(n+1) * (-b(n+1) + 2*b(n)) if n > 0 where b(n) = a(n) / 4^n. - Michael Somos, Dec 31 2013 For n > 0, a(n) = 2^(2n-1) - A008549(n). - Gus Wiseman, Jun 27 2021 EXAMPLE G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 99*x^4 + 382*x^5 + 1486*x^6 + 5812*x^7 + ... MAPLE seq(sum(binomial(2*n, 2*k+irem(n, 2)), k=0..floor((1/2)*n)), n=0..20) seq(binomial(2*n-1, n)+4^(n-1)-(1/4)*0^n, n=0..20) MATHEMATICA a[ n_] := SeriesCoefficient[((1 + 1/Sqrt[1 - 4 x])/2)^2, {x, 0, n}] (* Michael Somos, Dec 31 2013 *) ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], ats[#]>=0&]], {n, 0, 15, 2}] (* Gus Wiseman, Jun 21 2021 *) CROSSREFS Cf. A000984, A081294, A088218. The case of alternating sum = 0 is A001700. The case of alternating sum < 0 is A008549. This is the even bisection of A116406. The restriction to reversed partitions is A344611. A103919 counts partitions by sum and alternating sum (reverse: A344612). A124754 gives the alternating sum of standard compositions. A316524 is the alternating sum of the prime indices of n. A344611 counts partitions of 2n with reverse-alternating sum >= 0. Cf. A000041, A000070, A000302, A000346, A003242, A027306, A032443, A058622, A058696, A119899, A344607, A344610. Sequence in context: A369231 A369489 A273320 * A049775 A101850 A279002 Adjacent sequences: A114118 A114119 A114120 * A114122 A114123 A114124 KEYWORD easy,nonn AUTHOR Paul Barry, Feb 13 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 29 19:20 EST 2024. Contains 370428 sequences. (Running on oeis4.)