Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Apr 10 2024 08:46:48
%S 1,2,7,26,99,382,1486,5812,22819,89846,354522,1401292,5546382,
%T 21977516,87167164,345994216,1374282019,5461770406,21717436834,
%U 86392108636,343801171354,1368640564996,5450095992964,21708901408216,86492546019214
%N Expansion of (sqrt(1 - 4*x) + (1 - 2*x))/(2*(1 - 4*x)).
%C Second binomial transform of A032443 with interpolated zeros.
%C a(n) is the total number of lattice points, taken over all Dyck n-paths (A000108), that (i) lie on or above ground level and (ii) lie on or directly below a peak. For example with n = 2, UUDD has 1 peak contributing 3 lattice points--(2, 0), (2, 1) and (2, 2) when the path starts at the origin--and UDUD has 2 peaks, each contributing 2 lattice points and so a(2) = 3 + 4 = 7. - _David Callan_, Jul 14 2006
%C Hankel transform is binomial(n + 2, 2). - _Paul Barry_, Dec 04 2007
%C Image of (-1)^n under the Riordan array ((1/2)(1/(1 - 4x) + 1/sqrt(1 - 4x)), c(x) - 1), c(x) the g.f. of A000108. - _Paul Barry_, Jun 15 2008
%C From _Gus Wiseman_, Jun 21 2021: (Start)
%C Also the even bisection of A116406 = number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(3) = 26 compositions are:
%C (6) (33) (114) (1122) (11112) (111111)
%C (42) (123) (1131) (11121)
%C (51) (132) (1221) (11211)
%C (213) (2112) (12111)
%C (222) (2121) (21111)
%C (231) (2211)
%C (312) (3111)
%C (321)
%C (411)
%C (End)
%H G. C. Greubel, <a href="/A114121/b114121.txt">Table of n, a(n) for n = 0..1000</a>
%H G.-S. Cheon, H. Kim, L. W. Shapiro, <a href="http://arxiv.org/abs/1410.1249">Mutation effects in ordered trees</a>, arXiv:1410.1249 [math.CO], 2014
%H Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Merca1/merca6.html">A Note on Cosine Power Sums</a> J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
%F a(n) = Sum_{k=0..n} C(n, k)*2^(n-k-2)*(2^k + C(k, k/2))*(1 + (-1)^k).
%F a(n) = (A000984(n) + A081294(n))/2.
%F From _Paul Barry_, Jun 15 2008: (Start)
%F G.f.: (1 - 4*x + (1 - 2*x)*sqrt(1 - 4*x))/(2*(1 - 4*x)^(3/2)).
%F a(n) = Sum_{k=0..n} ( Sum_{j=0..n} C(2*n, n-k-j)*(-1)^j ). (End)
%F a(n) = Sum_{k=0..n} C(2*n, n-k)*(1 + (-1)^k)/2. - _Paul Barry_, Aug 06 2009
%F From _Paul Barry_, Sep 07 2009: (Start)
%F a(n) = C(2*n-1, n-1) + (4^n + 3*0^n)/4.
%F Integral representation a(n) = (1/(2*pi))*(Integral_{x=0..4} x^n/sqrt(x(4 - x))) + (4^n + 0^n)/4. (End)
%F a(n) = Sum_{k=0..floor(n/2)} C(2*n, 2*k + (n mod 2)). - _Mircea Merca_, Jun 21 2011
%F Conjecture: n*a(n) + 2*(3 - 4*n)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - _R. J. Mathar_, Nov 07 2012
%F Conjecture verified using the differential equation (16*x^2-8*x+1)*g'(x) + (8*x-2)*g(x)-2*x=0 satisfied by the G.f. - _Robert Israel_, Jul 27 2020
%F a(n) = Sum_{i=0..n} (sum_{j=0..n} binomial(n, i+j)*binomial(n, j-i)). - _Yalcin Aktar_, Jan 07 2013.
%F G.f.: (1 + (1 - 4*x)^(-1/2))^2 / 4. Convolution square of A088218. - _Michael Somos_, Dec 31 2013
%F 0 = (1 + 2*n)*b(n) - (5 + 4*n)*b(n+1) + (4 + 2*n)*b(n+2) if n > 0 where b(n) = a(n) / 4^n. - _Michael Somos_, Dec 31 2013
%F 0 = b(n+3) * (2*b(n+2) - 7*b(n+1) + 5*b(n)) + b(n+2) * (-b(n+2) + 7*b(n+1) - 7*b(n)) + b(n+1) * (-b(n+1) + 2*b(n)) if n > 0 where b(n) = a(n) / 4^n. - _Michael Somos_, Dec 31 2013
%F For n > 0, a(n) = 2^(2n-1) - A008549(n). - _Gus Wiseman_, Jun 27 2021
%F a(n) = [x^n] 1/((1-2*x) * (1-x)^(n-1)). - _Seiichi Manyama_, Apr 10 2024
%e G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 99*x^4 + 382*x^5 + 1486*x^6 + 5812*x^7 + ...
%p seq(sum(binomial(2*n,2*k+irem(n,2)),k=0..floor((1/2)*n)),n=0..20)
%p seq(binomial(2*n-1,n)+4^(n-1)-(1/4)*0^n,n=0..20)
%t a[ n_] := SeriesCoefficient[((1 + 1/Sqrt[1 - 4 x])/2)^2, {x, 0, n}] (* _Michael Somos_, Dec 31 2013 *)
%t ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]>=0&]],{n,0,15,2}] (* _Gus Wiseman_, Jun 21 2021 *)
%Y Cf. A000984, A081294, A088218.
%Y The case of alternating sum = 0 is A001700.
%Y The case of alternating sum < 0 is A008549.
%Y This is the even bisection of A116406.
%Y The restriction to reversed partitions is A344611.
%Y A103919 counts partitions by sum and alternating sum (reverse: A344612).
%Y A124754 gives the alternating sum of standard compositions.
%Y A316524 is the alternating sum of the prime indices of n.
%Y A344611 counts partitions of 2n with reverse-alternating sum >= 0.
%Y Cf. A000041, A000070, A000302, A000346, A003242, A027306, A032443, A058622, A058696, A119899, A344607, A344610.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Feb 13 2006