OFFSET
0,5
COMMENTS
Triangle formed of even-numbered columns of the Delannoy triangle A008288. - Philippe Deléham, Mar 11 2013
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = Sum_{j=0..n} C(2*k,n-k-j)*C(n-k,j)*2^(n-k-j).
T(n, k) = Sum_{j=0..n-k} C(2*k,j)*C(n-k,j)*2^j.
Sum_{k=0..n} T(n, k) = A099463(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = A116404(n).
T(n, k) = hypergeom([-2*k, k-n], [1], 2). - Peter Luschny, Sep 16 2014
T(n, n-k) = A184883(n, k). - G. C. Greubel, Nov 20 2021
EXAMPLE
Triangle begins
1;
1, 1;
1, 5, 1;
1, 13, 9, 1;
1, 25, 41, 13, 1;
1, 41, 129, 85, 17, 1;
1, 61, 321, 377, 145, 21, 1;
MAPLE
T := (n, k) -> hypergeom([-2*k, k-n], [1], 2);
seq(seq(round(evalf(T(n, k), 99)), k=0..n), n=0..9); # Peter Luschny, Sep 16 2014
MATHEMATICA
T[n_, k_] := Hypergeometric2F1[-2k, k-n, 1, 2];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
PROG
(Magma)
T:= func< n, k | (&+[Binomial(2*k, j)*Binomial(n-k, j)*2^j: j in [0..n-k]]) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2021
(Sage)
def A114123(n, k): return round( hypergeometric([-2*k, k-n], [1], 2) )
flatten([[A114123(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 20 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Feb 07 2006, Oct 22 2006
STATUS
approved