The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114123 Riordan array (1/(1-x), x*(1+x)^2/(1-x)^2). 6
 1, 1, 1, 1, 5, 1, 1, 13, 9, 1, 1, 25, 41, 13, 1, 1, 41, 129, 85, 17, 1, 1, 61, 321, 377, 145, 21, 1, 1, 85, 681, 1289, 833, 221, 25, 1, 1, 113, 1289, 3653, 3649, 1561, 313, 29, 1, 1, 145, 2241, 8989, 13073, 8361, 2625, 421, 33, 1, 1, 181, 3649, 19825, 40081, 36365, 16641, 4089, 545, 37, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are A099463(n+1). Diagonal sums are A116404. Triangle formed of even-numbered columns of the Delannoy triangle A008288. - Philippe Deléham, Mar 11 2013 LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA T(n, k) = Sum_{j=0..n} C(2*k,n-k-j)*C(n-k,j)*2^(n-k-j). T(n, k) = Sum_{j=0..n-k} C(2*k,j)*C(n-k,j)*2^j. Sum_{k=0..n} T(n, k) = A099463(n+1). Sum_{k=0..floor(n/2)} T(n, k) = A116404(n). T(n, k) = hypergeom([-2*k, k-n], [1], 2). - Peter Luschny, Sep 16 2014 T(n, n-k) = A184883(n, k). - G. C. Greubel, Nov 20 2021 EXAMPLE Triangle begins 1; 1, 1; 1, 5, 1; 1, 13, 9, 1; 1, 25, 41, 13, 1; 1, 41, 129, 85, 17, 1; 1, 61, 321, 377, 145, 21, 1; MAPLE T := (n, k) -> hypergeom([-2*k, k-n], [1], 2); seq(seq(round(evalf(T(n, k), 99)), k=0..n), n=0..9); # Peter Luschny, Sep 16 2014 MATHEMATICA T[n_, k_] := Hypergeometric2F1[-2k, k-n, 1, 2]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *) PROG (Magma) T:= func< n, k | (&+[Binomial(2*k, j)*Binomial(n-k, j)*2^j: j in [0..n-k]]) >; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2021 (Sage) def A114123(n, k): return round( hypergeometric([-2*k, k-n], [1], 2) ) flatten([[A114123(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 20 2021 CROSSREFS Cf. A008288, A099463 (row sums), A116404 (diagonal sums), A184883. Sequence in context: A299221 A300035 A130227 * A324009 A143007 A152654 Adjacent sequences: A114120 A114121 A114122 * A114124 A114125 A114126 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Feb 07 2006, Oct 22 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 00:30 EDT 2024. Contains 371917 sequences. (Running on oeis4.)