login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299221
T(n,k) = Number of n X k 0..1 arrays with every element equal to 0, 2, 3, 4, 6 or 7 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 5, 1, 1, 12, 12, 1, 1, 37, 22, 37, 1, 1, 104, 81, 81, 104, 1, 1, 301, 307, 427, 307, 301, 1, 1, 864, 1201, 2338, 2338, 1201, 864, 1, 1, 2485, 5066, 13458, 21730, 13458, 5066, 2485, 1, 1, 7144, 21292, 84948, 202841, 202841, 84948, 21292, 7144, 1, 1, 20541
OFFSET
1,5
COMMENTS
Table starts
.1....1.....1.......1.........1...........1............1..............1
.1....5....12......37.......104.........301..........864...........2485
.1...12....22......81.......307........1201.........5066..........21292
.1...37....81.....427......2338.......13458........84948.........543741
.1..104...307....2338.....21730......202841......1992466.......19685956
.1..301..1201...13458....202841.....3096833.....48911434......775504649
.1..864..5066...84948...1992466....48911434...1226106440....30729398000
.1.2485.21292..543741..19685956...775504649..30729398000..1213390065190
.1.7144.90443.3534493.195564094.12397088059.778116037031.48505143319432
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1),
k=2: a(n) = 5*a(n-2) +8*a(n-3) +4*a(n-4),
k=3: [order 19] for n>20,
k=4: [order 66] for n>68.
EXAMPLE
Some solutions for n=5, k=4
..0..1..0..1. .0..0..1..0. .0..0..1..1. .0..0..0..0. .0..0..1..0
..1..1..0..0. .1..0..0..0. .0..1..1..0. .0..1..0..1. .0..0..1..1
..1..0..0..1. .0..0..0..1. .0..1..0..0. .1..1..1..1. .1..0..1..0
..0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..1..1
..1..0..1..1. .0..1..0..0. .0..1..1..0. .1..0..0..1. .1..0..1..1
CROSSREFS
Column 2 is A297909.
Sequence in context: A297915 A298508 A298328 * A300035 A130227 A114123
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 05 2018
STATUS
approved