login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184883
Number triangle T(n,k) = [k<=n]*Hypergeometric2F1([-k, 2k-2n], [1], 2).
4
1, 1, 1, 1, 5, 1, 1, 9, 13, 1, 1, 13, 41, 25, 1, 1, 17, 85, 129, 41, 1, 1, 21, 145, 377, 321, 61, 1, 1, 25, 221, 833, 1289, 681, 85, 1, 1, 29, 313, 1561, 3649, 3653, 1289, 113, 1, 1, 33, 421, 2625, 8361, 13073, 8989, 2241, 145, 1, 1, 37, 545, 4089, 16641, 36365, 40081, 19825, 3649, 181, 1
OFFSET
0,5
FORMULA
T(n,k) = [k<=n]*Sum_{j=0..k} C(2*n-2*k,j)*C(k,j)*2^j.
T(n, n-k) = A114123(n, k).
Sum_{k=0..n} T(n, k) = A099463(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = A184884(n).
T(n, k) = Hypergeometric2F1([-k, 2*(k-n)], [1], 2). - G. C. Greubel, Nov 19 2021
EXAMPLE
Triangle begins
1;
1, 1;
1, 5, 1;
1, 9, 13, 1;
1, 13, 41, 25, 1;
1, 17, 85, 129, 41, 1;
1, 21, 145, 377, 321, 61, 1;
1, 25, 221, 833, 1289, 681, 85, 1;
1, 29, 313, 1561, 3649, 3653, 1289, 113, 1;
1, 33, 421, 2625, 8361, 13073, 8989, 2241, 145, 1;
1, 37, 545, 4089, 16641, 36365, 40081, 19825, 3649, 181, 1;
MATHEMATICA
A184883[n_, k_]:= Hypergeometric2F1[-k, 2*(k-n), 1, 2];
Table[A184883[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2021 *)
PROG
(Magma)
T:= func< n, k | (&+[Binomial(k, j)*Binomial(2*(n-k), j)*2^j: j in [0..k]]) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2021
(Sage)
def A184883(n, k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) )
flatten([[A184883(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 19 2021
CROSSREFS
Cf. A099463 (row sums), A114123, A184884 (diagonal sums).
Sequence in context: A131061 A157169 A081578 * A279003 A210651 A255831
KEYWORD
nonn,easy,tabl
AUTHOR
Paul Barry, Jan 24 2011
STATUS
approved