The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184884 Diagonal sums of number triangle A184883. 3
 1, 1, 2, 6, 11, 27, 60, 132, 301, 669, 1502, 3370, 7543, 16919, 37912, 84968, 190457, 426841, 956698, 2144238, 4805827, 10771315, 24141588, 54108332, 121272549, 271806901, 609198390, 1365390546, 3060236911, 6858880431, 15372743856, 34454786384, 77223188593, 173079605553, 387921692082, 869445237846 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,2,2,-1,1). FORMULA G.f.: (1-x^2)/(1-x-2*x^2-2*x^3+x^4-x^5). a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..k} C(2*n-4*k,j)*C(k,j)*2^j. a(n) = Sum_{k=0..floor(n/2)} Hypergeometric2F1([-k, 2*(k-n)], [1], 2). - G. C. Greubel, Nov 19 2021 MATHEMATICA LinearRecurrence[{1, 2, 2, -1, 1}, {1, 1, 2, 6, 11}, 45] (* G. C. Greubel, Nov 19 2021 *) PROG (Magma) A184883:= func< n, k | (&+[Binomial(k, j)*Binomial(2*(n-k), j)*2^j: j in [0..k]]) >; A184884:= func< n | (&+[A184883(n, j): j in [0..Floor(n/2)]]) >; [A184884(n): n in [0..40]]; // G. C. Greubel, Nov 19 2021 (Sage) def A184883(n, k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) ) def A184884(n): return sum( A184883(n, j) for j in (0..n//2) ) [A184884(n) for n in (0..40)] # G. C. Greubel, Nov 19 2021 CROSSREFS Cf. A183883. Sequence in context: A091622 A362051 A191315 * A275222 A165821 A365046 Adjacent sequences: A184881 A184882 A184883 * A184885 A184886 A184887 KEYWORD nonn,easy AUTHOR Paul Barry, Jan 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 02:34 EDT 2024. Contains 373402 sequences. (Running on oeis4.)