

A184885


Irregular triangle in which row n has the values of k>1 such that sum_{i=n..n+k1} i^2 is a square.


2



24, 2, 578, 961, 23, 33, 50, 184, 2209, 24, 552049, 22898, 96, 97, 312, 23, 5329, 11, 2, 24, 289, 1221025, 96, 59, 6889, 24, 26, 49, 554, 600, 3601, 21600, 33, 338, 50, 96, 169, 578, 4056, 61250, 148825, 11, 59, 312, 649, 11881, 24, 50, 122, 15625, 96, 338, 3479, 2075, 33, 3179, 242, 218, 864, 50, 8450, 122, 22801, 36481, 24, 194, 25921, 50, 242
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

That is, this sequence gives the number of squares in the sums described in A184763. Sequence A184762 gives the length of row n. A180442 lists the nonempty rows. All these numbers must appear in A001032.


LINKS



FORMULA

Row n = row n of A184763 minus n1.


EXAMPLE

The triangle is
(row 1) 24
(row 3) 2, 578, 961
(row 7) 23, 33, 50, 184, 2209
(row 9) 24, 552049
(row 11) 22898
(row 13) 96
(row 15) 97, 312


CROSSREFS



KEYWORD

nonn,tabf,hard


AUTHOR



STATUS

approved



