login
A184888
a(n) = C(2n,n) * (8^n/n!^2) * Product_{k=0..n-1} (8k+3)*(8k+5).
1
1, 240, 205920, 243443200, 333578044800, 497645070354432, 784620394258821120, 1286100339771928412160, 2169691463830861104076800, 3742512413364745240724275200, 6570354792903146744615537541120
OFFSET
0,2
FORMULA
Self-convolution of A184887, where
A184887(n) = (8^n/n!^2) * Product_{k=0..n-1} (16k+3)*(16k+5).
a(n) ~ sqrt(sqrt(2)+2) * 2^(11*n - 1) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Oct 05 2020
EXAMPLE
G.f.: A(x) = 1 + 240*x + 205920*x^2 + 243443200*x^3 +...
A(x)^(1/2) = 1 + 120*x + 95760*x^2 + 110230400*x^3 +...+ A184887(n)*x^n +...
PROG
(PARI) {a(n)=(2*n)!/n!^2*(8^n/n!^2)*prod(k=0, n-1, (8*k+3)*(8*k+5))}
CROSSREFS
Sequence in context: A035281 A008696 A047806 * A158792 A270051 A028678
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2011
STATUS
approved