login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035281
Fourier coefficients of T_4.
3
1, -240, -141444, -8529280, -238758390, -4303488384, -57655810840, -621029223936, -5646404776905, -44775042057600, -316969789769460, -2038098739288320, -12061935823445274, -66393891923258880, -342773252668461240, -1671250213190122496
OFFSET
-1,2
COMMENTS
T_4 is the unique weight = -2 normalized meromorphic modular form for SL(2,Z) with all poles at infinity.
REFERENCES
C. L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1980, pp. 249-268.
LINKS
FORMULA
G.f.: G_10/Delta (in Siegel's notation.)
G.f.: E_4 * E_6 / Delta where Delta = eta(q)^24. - Michael Somos, Mar 02 2018
a(n) ~ -exp(4*Pi*sqrt(n)) / (sqrt(2) * n^(7/4)). - Vaclav Kotesovec, Oct 04 2020
EXAMPLE
T_4 = 1/q - 240 - 141444*q - 8529280*q^2 - 238758390*q^3 - 4303488384*q^4 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, (t2^2 + 14 t2 t3 + t3^2) (t2^3 - 33 (t2 + t3) t2 t3 + t3^3) / (q QPochhammer[ q]^24)], {q, 0, n}]; (* Michael Somos, Mar 02 2018 *)
a[ n_] := SeriesCoefficient[ With[{t3 = EllipticTheta[ 3, 0, q]^4, t4 = EllipticTheta[ 4, 0, q]^4}, (16 t3^2 - 16 t3 t4 + t4^2) (64 t3^3 - 96 t3^2 t4 + 30 t3 t4^2 + t4^3) / (- q QPochhammer[ q]^24)], {q, 0, n}]; (* Michael Somos, Mar 02 2018 *)
CROSSREFS
T_k: A035230 (k=0), this sequence (k=4), A035293 (k=6), A035314 (k=8), A035315 (k=10).
Sequence in context: A213696 A275459 A377220 * A008696 A047806 A184888
KEYWORD
sign,easy,nice
AUTHOR
Barry Brent (barryb(AT)primenet.com)
STATUS
approved