OFFSET
1,2
COMMENTS
Let zetaI(s) be the zeta function of icosian ring: zetaI(s) = zetaQ(tau)(2s)*zetaQ(tau)(2s-1) where zetaQ(tau)(s) is defined in A035187; then zetaI(s) = Sum_{n>=1} a(n)/n^(2s).
Nonzero terms of A078473. - Michel Marcus, Mar 03 2014
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
M. Baake and R. V. Moody, Similarity submodules and root systems in four dimensions, Canad. J. Math. (1999), 51 1258-1276.
M. Baake and R. V. Moody, Similarity submodules and root systems in four dimensions, arXiv:math/9904028 [math.MG], 1999.
MATHEMATICA
f[p_, e_] := Which[p == 5, (5^(e + 1) - 1)/4, (m = Mod[p, 5]) == 2 || m == 3, If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), 0], m == 1 || m == 4, Sum[(k + 1)*(e - k + 1)*p^k, {k, 0, e}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 0 &] (* Amiram Eldar, May 13 2022 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved