login
A035282
Expansion of zeta function of icosian ring (nonzero terms).
5
1, 5, 6, 10, 24, 21, 40, 30, 31, 60, 64, 50, 84, 120, 60, 50, 144, 120, 124, 85, 144, 200, 160, 126, 91, 180, 240, 240, 155, 204, 220, 300, 410, 320, 156, 264, 280, 210, 360, 300, 304, 384, 420, 170, 400, 504, 360, 300, 364, 384, 250, 400, 504, 960, 424, 720, 310
OFFSET
1,2
COMMENTS
Let zetaI(s) be the zeta function of icosian ring: zetaI(s) = zetaQ(tau)(2s)*zetaQ(tau)(2s-1) where zetaQ(tau)(s) is defined in A035187; then zetaI(s) = Sum_{n>=1} a(n)/n^(2s).
Nonzero terms of A078473. - Michel Marcus, Mar 03 2014
LINKS
M. Baake and R. V. Moody, Similarity submodules and root systems in four dimensions, Canad. J. Math. (1999), 51 1258-1276.
M. Baake and R. V. Moody, Similarity submodules and root systems in four dimensions, arXiv:math/9904028 [math.MG], 1999.
MATHEMATICA
f[p_, e_] := Which[p == 5, (5^(e + 1) - 1)/4, (m = Mod[p, 5]) == 2 || m == 3, If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), 0], m == 1 || m == 4, Sum[(k + 1)*(e - k + 1)*p^k, {k, 0, e}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 0 &] (* Amiram Eldar, May 13 2022 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved