login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078473
Expansion of zeta function of icosian ring.
4
1, 0, 0, 5, 6, 0, 0, 0, 10, 0, 24, 0, 0, 0, 0, 21, 0, 0, 40, 30, 0, 0, 0, 0, 31, 0, 0, 0, 60, 0, 64, 0, 0, 0, 0, 50, 0, 0, 0, 0, 84, 0, 0, 120, 60, 0, 0, 0, 50, 0, 0, 0, 0, 0, 144, 0, 0, 0, 120, 0, 124, 0, 0, 85, 0, 0, 0, 0, 0, 0, 144, 0, 0, 0, 0, 200, 0, 0, 160, 126, 91, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,4
COMMENTS
Let zetaI(s) be the zeta function of icosian ring: zetaI(s) = zetaQ(tau)(2s)*zetaQ(tau)(2s-1) where zetaQ(tau)(s) is defined in A035187. Then zetaI(s) = Sum_{n>=1} a(n)/n^(2s).
LINKS
M. Baake and R. V. Moody, Similarity submodules and root systems in four dimensions, Canad. J. Math. 51 (1999), 1258-1276; arXiv preprint, arXiv:math/9904028 [math.MG], 1999.
FORMULA
Multiplicative with a(p^e) = (5^(e + 1) - 1)/4 if p = 5, (p^(e + 2) - 1)/(p^2 - 1) or 0 if p == 2 or 3 (mod 5) and e is even or odd, respectively, and Sum_{k=0..e} (k + 1)*(e - k + 1)*p^k if p == 1 or 4 (mod 5). - Amiram Eldar, May 13 2022
MATHEMATICA
f[p_, e_] := Which[p == 5, (5^(e + 1) - 1)/4, (m = Mod[p, 5]) == 2 || m == 3, If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), 0], m == 1 || m == 4, Sum[(k + 1)*(e - k + 1)*p^k, {k, 0, e}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 13 2022 *)
PROG
(PARI) {a(n)=local(A); if(n<1, 0, A=direuler(p=2, n, 1/(1-X)/(1-kronecker(5, p)*X)); sumdiv(n, d, A[d]*d*A[n/d]))} /* Michael Somos, Jun 06 2005 */
(PARI) pf(p, r) = {if (p==5, (5^(r+1) -1)/4, if (((p % 5) == 2) || ((p % 5) == 3), if (!(r % 2), (p^(r+2) - 1)/(p^2-1), 0), if (((p % 5) == 1) || ((p % 5) == 4), sum(k=0, r, (k+1)*(r-k+1)*p^k))); ); }
a(n) = {my(f = factor(n)); prod(i=1, #f~, pf(f[i, 1], f[i, 2])); } \\ Michel Marcus, Mar 03 2014
CROSSREFS
Cf. A035187, A035282 (nonzero terms of the sequence), A031363 (n for which a(n) is not zero), A078471.
Sequence in context: A102058 A231409 A031364 * A215833 A110800 A021645
KEYWORD
nonn,mult
AUTHOR
Benoit Cloitre, Dec 31 2002
STATUS
approved