login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of zeta function of icosian ring.
4

%I #23 May 13 2022 14:04:53

%S 1,0,0,5,6,0,0,0,10,0,24,0,0,0,0,21,0,0,40,30,0,0,0,0,31,0,0,0,60,0,

%T 64,0,0,0,0,50,0,0,0,0,84,0,0,120,60,0,0,0,50,0,0,0,0,0,144,0,0,0,120,

%U 0,124,0,0,85,0,0,0,0,0,0,144,0,0,0,0,200,0,0,160,126,91,0,0,0,0,0,0,0

%N Expansion of zeta function of icosian ring.

%C Let zetaI(s) be the zeta function of icosian ring: zetaI(s) = zetaQ(tau)(2s)*zetaQ(tau)(2s-1) where zetaQ(tau)(s) is defined in A035187. Then zetaI(s) = Sum_{n>=1} a(n)/n^(2s).

%H Amiram Eldar, <a href="/A078473/b078473.txt">Table of n, a(n) for n = 1..10000</a>

%H M. Baake and R. V. Moody, <a href="http://dx.doi.org/10.4153/CJM-1999-057-0">Similarity submodules and root systems in four dimensions</a>, Canad. J. Math. 51 (1999), 1258-1276; <a href="https://arxiv.org/abs/math/9904028">arXiv preprint</a>, arXiv:math/9904028 [math.MG], 1999.

%F Multiplicative with a(p^e) = (5^(e + 1) - 1)/4 if p = 5, (p^(e + 2) - 1)/(p^2 - 1) or 0 if p == 2 or 3 (mod 5) and e is even or odd, respectively, and Sum_{k=0..e} (k + 1)*(e - k + 1)*p^k if p == 1 or 4 (mod 5). - _Amiram Eldar_, May 13 2022

%t f[p_, e_] := Which[p == 5, (5^(e + 1) - 1)/4, (m = Mod[p, 5]) == 2 || m == 3, If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), 0], m == 1 || m == 4, Sum[(k + 1)*(e - k + 1)*p^k, {k, 0, e}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, May 13 2022 *)

%o (PARI) {a(n)=local(A); if(n<1, 0, A=direuler(p=2,n,1/(1-X)/(1-kronecker(5,p)*X)); sumdiv(n,d,A[d]*d*A[n/d]))} /* _Michael Somos_, Jun 06 2005 */

%o (PARI) pf(p, r) = {if (p==5, (5^(r+1) -1)/4, if (((p % 5) == 2) || ((p % 5) == 3), if (!(r % 2), (p^(r+2) - 1)/(p^2-1), 0), if (((p % 5) == 1) || ((p % 5) == 4), sum(k=0, r, (k+1)*(r-k+1)*p^k))););}

%o a(n) = {my(f = factor(n)); prod(i=1, #f~, pf(f[i, 1], f[i, 2]));} \\ _Michel Marcus_, Mar 03 2014

%Y Cf. A035187, A035282 (nonzero terms of the sequence), A031363 (n for which a(n) is not zero), A078471.

%K nonn,mult

%O 1,4

%A _Benoit Cloitre_, Dec 31 2002