login
A018834
Numbers k such that the decimal expansion of k^2 contains k as a substring.
27
0, 1, 5, 6, 10, 25, 50, 60, 76, 100, 250, 376, 500, 600, 625, 760, 1000, 2500, 3760, 3792, 5000, 6000, 6250, 7600, 9376, 10000, 14651, 25000, 37600, 50000, 60000, 62500, 76000, 90625, 93760, 100000, 109376, 250000, 376000, 495475, 500000, 505025
OFFSET
1,3
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..200 (first 126 terms from David W. Wilson)
EXAMPLE
25^2 = 625 which contains 25.
3792^2 = 14_3792_64, 14651^2 = 2_14651_801.
MATHEMATICA
Select[Range[510000], MemberQ[FromDigits /@ Partition[IntegerDigits[#^2], IntegerLength[#], 1], #] &] (* Jayanta Basu, Jun 29 2013 *)
Select[Range[0, 510000], StringPosition[ToString[#^2], ToString[#]]!={}&] (* Ivan N. Ianakiev, Oct 02 2016 *)
PROG
(Haskell)
import Data.List (isInfixOf)
a018834 n = a018834_list !! (n-1)
a018834_list = filter (\x -> show x `isInfixOf` show (x^2)) [0..]
-- Reinhard Zumkeller, Jul 27 2011
(Python)
from itertools import count, islice
def A018834_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:str(n) in str(n**2), count(max(startvalue, 0)))
A018834_list = list(islice(A018834_gen(), 20)) # Chai Wah Wu, Apr 04 2023
CROSSREFS
Cf. A000290. Supersequence of A029943.
Cf. A018826 (base 2), A018827 (base 3), A018828 (base 4), A018829 (base 5), A018830 (base 6), A018831 (base 7), A018832 (base 8), A018833 (base 9).
Cf. A029942 (cubes), A075904 (4th powers), A075905 (5th powers).
Sequence in context: A035282 A075156 A075904 * A029943 A356760 A063630
KEYWORD
nonn,base
STATUS
approved