login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A018826
Numbers n such that n is a substring of its square when both are written in base 2.
15
0, 1, 2, 4, 8, 16, 27, 32, 41, 54, 64, 82, 108, 128, 145, 164, 165, 256, 283, 290, 328, 487, 512, 545, 566, 580, 974, 1024, 1090, 1132, 1160, 1773, 1948, 2048, 2113, 2180, 2320, 2701, 3546, 3896, 4096, 4226, 4261, 4360, 4757, 5402, 7092, 7625, 8079, 8192
OFFSET
1,3
COMMENTS
Complement of A136492. - Reinhard Zumkeller, Jan 01 2008
A136510(a(n)) = 2 for n>0. - Reinhard Zumkeller, Jan 03 2008
From Robert Israel, Jul 11 2018: (Start)
Contains A000079.
If x satisfies x^2 == 8*x + 1 (mod 2^m) and 0 < x < 2^(m-3) then x is in the sequence. Note that x^2 == 8*x + 1 has 4 solutions mod 2^m for m >= 3. Terms obtained in this way include 27, 283, 1773, 9965, 55579, 206573, .... (End)
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..700 (first 200 terms from Robert Israel)
EXAMPLE
27 in binary is 11011 and 27^2 = 729 in binary is 1011011001 which has substring 11011. - Michael Somos, Mar 16 2015
MAPLE
filter:= proc(n) local S, S2;
S:= convert(convert(n, binary), string);
S2:= convert(convert(n^2, binary), string);
StringTools:-Search(S, S2)<>0
end proc:
select(filter, [$0..10000]); # Robert Israel, Jul 11 2018
MATHEMATICA
Select[Range[0, 8192], {} != SequencePosition @@ IntegerDigits[{#^2, #}, 2] &] (* Giovanni Resta, Aug 20 2018 *)
Select[Range[0, 10000], SequenceCount[IntegerDigits[#^2, 2], IntegerDigits[#, 2]]>0&] (* Harvey P. Dale, May 03 2022 *)
PROG
(PARI) issub(b, bs, k) = {for (i=1, #b, if (b[i] != bs[i+k-1], return (0)); ); return (1); }
a076141(n) = {if (n, b = binary(n), b = [0]); if (n, bs = binary(n^2), bs = [0]); sum(k=1, #bs - #b +1, issub(b, bs, k)); }
lista(nn) = for (n=0, nn, if (a076141(n) == 1, print1(n, ", "))); \\ Michel Marcus, Mar 15 2015
(Python)
def ok(n): return bin(n)[2:] in bin(n**2)[2:]
print([k for k in range(9999) if ok(k)]) # Michael S. Branicky, Apr 04 2024
CROSSREFS
Cf. A018827 (base 3), A018828 (base 4), A018829 (base 5), A018830 (base 6), A018831 (base 7), A018832 (base 8), A018833 (base 9), A018834 (base 10).
Sequence in context: A180249 A060957 A322326 * A342130 A258624 A236292
KEYWORD
nonn,base
STATUS
approved