OFFSET
1,3
COMMENTS
Complement of A136492. - Reinhard Zumkeller, Jan 01 2008
A136510(a(n)) = 2 for n>0. - Reinhard Zumkeller, Jan 03 2008
From Robert Israel, Jul 11 2018: (Start)
Contains A000079.
If x satisfies x^2 == 8*x + 1 (mod 2^m) and 0 < x < 2^(m-3) then x is in the sequence. Note that x^2 == 8*x + 1 has 4 solutions mod 2^m for m >= 3. Terms obtained in this way include 27, 283, 1773, 9965, 55579, 206573, .... (End)
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..700 (first 200 terms from Robert Israel)
EXAMPLE
27 in binary is 11011 and 27^2 = 729 in binary is 1011011001 which has substring 11011. - Michael Somos, Mar 16 2015
MAPLE
filter:= proc(n) local S, S2;
S:= convert(convert(n, binary), string);
S2:= convert(convert(n^2, binary), string);
StringTools:-Search(S, S2)<>0
end proc:
select(filter, [$0..10000]); # Robert Israel, Jul 11 2018
MATHEMATICA
Select[Range[0, 8192], {} != SequencePosition @@ IntegerDigits[{#^2, #}, 2] &] (* Giovanni Resta, Aug 20 2018 *)
Select[Range[0, 10000], SequenceCount[IntegerDigits[#^2, 2], IntegerDigits[#, 2]]>0&] (* Harvey P. Dale, May 03 2022 *)
PROG
(PARI) issub(b, bs, k) = {for (i=1, #b, if (b[i] != bs[i+k-1], return (0)); ); return (1); }
a076141(n) = {if (n, b = binary(n), b = [0]); if (n, bs = binary(n^2), bs = [0]); sum(k=1, #bs - #b +1, issub(b, bs, k)); }
lista(nn) = for (n=0, nn, if (a076141(n) == 1, print1(n, ", "))); \\ Michel Marcus, Mar 15 2015
(Python)
def ok(n): return bin(n)[2:] in bin(n**2)[2:]
print([k for k in range(9999) if ok(k)]) # Michael S. Branicky, Apr 04 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
STATUS
approved