login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008696
Theta series of Niemeier lattice of type D_6^4.
5
1, 240, 190800, 16833600, 397680720, 4630540320, 34416204480, 187485916800, 814900050000, 2975524213680, 9486523478880, 27053074226880, 70486147972800, 169930956669600, 384163682797440, 820166912933760
OFFSET
0,2
COMMENTS
Also the theta series for the Niemeier lattice of type A_9^2 D_6. - clarified by Ben Mares, Sep 13 2022
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407.
LINKS
FORMULA
This series is the q-expansion of (13*E_4(z)^3 + 5*E_6(z)^2)/18. - Daniel D. Briggs, Nov 25 2011
MATHEMATICA
terms = 15; th = EllipticTheta; E4 = 1 + 240*Sum[k^3*(q^k/(1 - q^k)), {k, 1, terms}] + O[q]^terms; E6 = th[2, 0, q]^12 + th[3, 0, q]^12 - 33*th[2, 0, q]^4*th[3, 0, q]^4*(th[2, 0, q]^4 + th[3, 0, q]^4); CoefficientList[ (13/18)*E4^3 + (5/18)*E6^2 + O[q]^terms, q] (* Jean-François Alcover, Jul 05 2017 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved