Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 14 2022 08:25:53
%S 1,240,190800,16833600,397680720,4630540320,34416204480,187485916800,
%T 814900050000,2975524213680,9486523478880,27053074226880,
%U 70486147972800,169930956669600,384163682797440,820166912933760
%N Theta series of Niemeier lattice of type D_6^4.
%C Also the theta series for the Niemeier lattice of type A_9^2 D_6. - clarified by _Ben Mares_, Sep 13 2022
%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407.
%H G. C. Greubel, <a href="/A008696/b008696.txt">Table of n, a(n) for n = 0..1000</a>
%F This series is the q-expansion of (13*E_4(z)^3 + 5*E_6(z)^2)/18. - _Daniel D. Briggs_, Nov 25 2011
%t terms = 15; th = EllipticTheta; E4 = 1 + 240*Sum[k^3*(q^k/(1 - q^k)), {k, 1, terms}] + O[q]^terms; E6 = th[2, 0, q]^12 + th[3, 0, q]^12 - 33*th[2, 0, q]^4*th[3, 0, q]^4*(th[2, 0, q]^4 + th[3, 0, q]^4); CoefficientList[ (13/18)*E4^3 + (5/18)*E6^2 + O[q]^terms, q] (* _Jean-François Alcover_, Jul 05 2017 *)
%Y Cf. A004009, A013973.
%Y Cf. A008688 - A008695, A008697 - A008704.
%K nonn
%O 0,2
%A _N. J. A. Sloane_