login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184891
a(n) = (5^n/n!^2) * Product_{k=0..n-1} (10k+1)*(10k+4).
6
1, 20, 3850, 1078000, 355066250, 128107903000, 49001272897500, 19520507080800000, 8012558140822125000, 3365274419145292500000, 1439327869068441602250000, 624739666805574817770000000
OFFSET
0,2
LINKS
FORMULA
Self-convolution yields Sum_{k=0..n} a(n-k)*a(k) = A184892(n) where
. A184892(n) = C(2n,n) * (5^n/n!^2)*Product_{k=0..n-1} (5k+1)*(5k+4).
EXAMPLE
G.f.: A(x) = 1 + 20*x + 3850*x^2 + 1078000*x^3 +...
A(x)^2 = 1 + 40*x + 8100*x^2 + 2310000*x^3 +...+ A184892(n)*x^n +...
MATHEMATICA
Table[5^n/(n!)^2 Product[(10k+1)(10k+4), {k, 0, n-1}], {n, 0, 20}] (* Harvey P. Dale, Feb 02 2012 *)
FullSimplify[Table[2^(2*n) * 5^(3*n) * Gamma[n+1/10] * Gamma[n+2/5] / (Gamma[2/5] * Gamma[1/10] * Gamma[n+1]^2), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 03 2014 *)
PROG
(PARI) {a(n)=(5^n/n!^2)*prod(k=0, n-1, (10*k+1)*(10*k+4))}
CROSSREFS
Sequence in context: A225989 A332265 A177323 * A279297 A079759 A109894
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2011
STATUS
approved