login
A178529
Self-convolution square-root of A008977, where A008977(n) = (4n)!/(n!)^4.
6
1, 12, 1188, 170544, 28779300, 5318414640, 1041818334480, 212530940233920, 44671347000417060, 9607097095645249200, 2103954263946309574800, 467599488149125265169600, 105196895958882375628016400
OFFSET
0,2
COMMENTS
In Narumiya and Shiga on bottom of page 157 the g.f. is given as an integral. On page 158 the square of the g.f. is given as a hypergeometric function. - Michael Somos, Aug 12 2014
REFERENCES
N. Narumiya and H. Shiga, "The mirror map for a family of K3 surfaces induced from the simplest 3-dimensional reflexive polytope", Proceedings on Moonshine and related topics (Montréal, QC, 1999), 139-161, CRM Proc. Lecture Notes, 30, Amer. Math. Soc., Providence, RI, 2001. MR1877764 (2002m:14030)
LINKS
FORMULA
a(n) = 4^n/(n!)^2 * Product_{k=0..n-1} (8*k+1)*(8*k+3).
a(n) = 2^(8*n) * GAMMA(n+1/8) * GAMMA(n+3/8) /(GAMMA(1/8)*GAMMA(3/8) *GAMMA(n+1)^2). - Vaclav Kotesovec, Mar 07 2014
a(n) ~ GAMMA(5/8)*GAMMA(7/8) * 2^(8*n-3/2) / (Pi^2 * n^(3/2)). - Vaclav Kotesovec, Mar 07 2014
G.f.: F( 1/8, 3/8, 1; x) = 1 / B(3/8, 5/8) * integral_0^1 (u^5 * (1-u)^3 * (1-x*u))^(-1/8) du. - Michael Somos, Aug 12 2014
Convolution square is A008977. - Michael Somos, Aug 12 2014
EXAMPLE
G.f.: A(x) = 1 + 12*x + 1188*x^2 + 170544*x^3 + 28779300*x^4 +...
A(x)^2 = 1 + 24*x + 2520*x^2 + 369600*x^3 +...+ (4n)!/(n!)^4*x^n +...
MATHEMATICA
Table[4^n/(n!)^2*Product[(8*k + 1)*(8*k + 3), {k, 0, n - 1}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 07 2014 *)
a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/8, 3/8, 1, 256 x], {x, 0, n}]; (* Michael Somos, Aug 12 2014 *)
a[ n_] := 256^n / n!^2 Pochhammer[ 1/8, n] Pochhammer[ 3/8, n]; (* Michael Somos, Aug 12 2014 *)
PROG
(PARI) {a(n)=4^n*prod(k=0, n-1, (8*k+1)*(8*k+3))/(n!)^2}
(PARI) {a(n)=polcoeff(sqrt(sum(k=0, n, (4*k)!/(k!)^4*x^k)+x*O(x^n)), n)}
CROSSREFS
Cf. A008977.
Sequence in context: A112580 A229691 A180586 * A360502 A201642 A177090
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 23 2010
STATUS
approved