The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178529 Self-convolution square-root of A008977, where A008977(n) = (4n)!/(n!)^4. 6
 1, 12, 1188, 170544, 28779300, 5318414640, 1041818334480, 212530940233920, 44671347000417060, 9607097095645249200, 2103954263946309574800, 467599488149125265169600, 105196895958882375628016400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In Narumiya and Shiga on bottom of page 157 the g.f. is given as an integral. On page 158 the square of the g.f. is given as a hypergeometric function. - Michael Somos, Aug 12 2014 REFERENCES N. Narumiya and H. Shiga, "The mirror map for a family of K3 surfaces induced from the simplest 3-dimensional reflexive polytope", Proceedings on Moonshine and related topics (MontrĂ©al, QC, 1999), 139-161, CRM Proc. Lecture Notes, 30, Amer. Math. Soc., Providence, RI, 2001.  MR1877764 (2002m:14030) LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = 4^n/(n!)^2 * Product_{k=0..n-1} (8*k+1)*(8*k+3). a(n) = 2^(8*n) * GAMMA(n+1/8) * GAMMA(n+3/8) /(GAMMA(1/8)*GAMMA(3/8) *GAMMA(n+1)^2). - Vaclav Kotesovec, Mar 07 2014 a(n) ~ GAMMA(5/8)*GAMMA(7/8) * 2^(8*n-3/2) / (Pi^2 * n^(3/2)). - Vaclav Kotesovec, Mar 07 2014 G.f.: F( 1/8, 3/8, 1; x) = 1 / B(3/8, 5/8) * integral_0^1 (u^5 * (1-u)^3 * (1-x*u))^(-1/8) du. - Michael Somos, Aug 12 2014 Convolution square is A008977. - Michael Somos, Aug 12 2014 EXAMPLE G.f.: A(x) = 1 + 12*x + 1188*x^2 + 170544*x^3 + 28779300*x^4 +... A(x)^2 = 1 + 24*x + 2520*x^2 + 369600*x^3 +...+ (4n)!/(n!)^4*x^n +... MATHEMATICA Table[4^n/(n!)^2*Product[(8*k + 1)*(8*k + 3), {k, 0, n - 1}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 07 2014 *) a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/8, 3/8, 1, 256 x], {x, 0, n}]; (* Michael Somos, Aug 12 2014 *) a[ n_] := 256^n / n!^2 Pochhammer[ 1/8, n] Pochhammer[ 3/8, n]; (* Michael Somos, Aug 12 2014 *) PROG (PARI) {a(n)=4^n*prod(k=0, n-1, (8*k+1)*(8*k+3))/(n!)^2} (PARI) {a(n)=polcoeff(sqrt(sum(k=0, n, (4*k)!/(k!)^4*x^k)+x*O(x^n)), n)} CROSSREFS Cf. A008977. Sequence in context: A112580 A229691 A180586 * A201642 A177090 A103269 Adjacent sequences:  A178526 A178527 A178528 * A178530 A178531 A178532 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 23 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 10:20 EDT 2021. Contains 343940 sequences. (Running on oeis4.)