login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184889
a(n) = (5^n/n!^2) * Product_{k=0..n-1} (10k+2)*(10k+3).
2
1, 30, 5850, 1644500, 542685000, 196017822000, 75031266310000, 29905319000700000, 12279871614662437500, 5159062111690898125000, 2207046771381366217875000, 958150139674902210123750000
OFFSET
0,2
LINKS
FORMULA
Self-convolution yields Sum_{k=0..n} a(n-k)*a(k) = A184890(n) where A184890(n) = C(2n,n) * (5^n/n!^2)*Product_{k=0..n-1} (5k+2)*(5k+3).
EXAMPLE
G.f.: A(x) = 1 + 30*x + 5850*x^2 + 1644500*x^3 +...
A(x)^2 = 1 + 60*x + 12600*x^2 + 3640000*x^3 +...+ A184890(n)*x^n +...
MATHEMATICA
FullSimplify[Table[500^n * Gamma[n+1/5] * Gamma[n+3/10] / (Gamma[n+1]^2 * Gamma[1/5] * Gamma[3/10]), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 03 2014 *)
Join[{1}, With[{nn=15}, Table[5^n/(n!)^2, {n, nn}] Rest[FoldList[Times, 1, Table[ (10k+2)(10k+3), {k, 0, nn-1}]]]]] (* Harvey P. Dale, Sep 20 2014 *)
PROG
(PARI) {a(n)=(5^n/n!^2)*prod(k=0, n-1, (10*k+2)*(10*k+3))}
CROSSREFS
Sequence in context: A321427 A050984 A169686 * A358481 A300147 A087216
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2011
STATUS
approved