The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184889 a(n) = (5^n/n!^2) * Product_{k=0..n-1} (10k+2)*(10k+3). 2
1, 30, 5850, 1644500, 542685000, 196017822000, 75031266310000, 29905319000700000, 12279871614662437500, 5159062111690898125000, 2207046771381366217875000, 958150139674902210123750000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
Self-convolution yields Sum_{k=0..n} a(n-k)*a(k) = A184890(n) where A184890(n) = C(2n,n) * (5^n/n!^2)*Product_{k=0..n-1} (5k+2)*(5k+3).
EXAMPLE
G.f.: A(x) = 1 + 30*x + 5850*x^2 + 1644500*x^3 +...
A(x)^2 = 1 + 60*x + 12600*x^2 + 3640000*x^3 +...+ A184890(n)*x^n +...
MATHEMATICA
FullSimplify[Table[500^n * Gamma[n+1/5] * Gamma[n+3/10] / (Gamma[n+1]^2 * Gamma[1/5] * Gamma[3/10]), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 03 2014 *)
Join[{1}, With[{nn=15}, Table[5^n/(n!)^2, {n, nn}] Rest[FoldList[Times, 1, Table[ (10k+2)(10k+3), {k, 0, nn-1}]]]]] (* Harvey P. Dale, Sep 20 2014 *)
PROG
(PARI) {a(n)=(5^n/n!^2)*prod(k=0, n-1, (10*k+2)*(10*k+3))}
CROSSREFS
Sequence in context: A321427 A050984 A169686 * A358481 A300147 A087216
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 18:04 EDT 2024. Contains 373463 sequences. (Running on oeis4.)