login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184762
The number of numbers k > n such that Sum_{i=n..k} i^2 is a square.
4
1, 0, 3, 0, 0, 0, 5, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 1, 0, 4, 1, 2, 0, 0, 7, 0, 2, 2, 0, 1, 0, 4, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,3
COMMENTS
It is an old result (see Watson) that for n=1 the only k>n is k=24. Bremner, Stroeker, and Tzanakis compute the k for n <= 100 by solving elliptic curves. This sequence lists the number of k for each n; the values of k are in A184763. Sequence A180442 lists the n for which a(n) is nonzero.
LINKS
A. Bremner, R. J. Stroeker, N. Tzanakis, On Sums of Consecutive Squares, J. Number Theory 62 (1997), 39-70.
G. N. Watson, The problem of the square pyramid, Messenger of Mathematics 48 (1918), pp. 1-22.
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
T. D. Noe, Jan 21 2011
STATUS
approved