The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152654 A vector recursion sequence: k = 1; m = 2; l = 1; a(n)=k*{0,a(n-2),0}+m*{-(m-1)/m,a(n-1)}++m*{a(n-1),-(m-1)/m}+l*{0,0,a(n-4),0,0}. 0
 1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 29, 58, 29, 1, 1, 61, 188, 188, 61, 1, 1, 125, 528, 815, 528, 125, 1, 1, 253, 1368, 2887, 2887, 1368, 253, 1, 1, 509, 3368, 9067, 12421, 9067, 3368, 509, 1, 1, 1021, 8008, 26299, 46051, 46051, 26299, 8008, 1021, 1, 1, 2045, 18568 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The row sums are: {1, 2, 7, 28, 118, 500, 2123, 9018, 38311, 162760, 691472,...} LINKS FORMULA k = 1; m = 2; l = 1; a(n)=k*{0,a(n-2),0}+m*{-(m-1)/m,a(n-1)}++m*{a(n-1),-(m-1)/m}+l*{0,0,a(n-4),0,0}. EXAMPLE {1}, {1, 1}, {1, 5, 1}, {1, 13, 13, 1}, {1, 29, 58, 29, 1}, {1, 61, 188, 188, 61, 1}, {1, 125, 528, 815, 528, 125, 1}, {1, 253, 1368, 2887, 2887, 1368, 253, 1}, {1, 509, 3368, 9067, 12421, 9067, 3368, 509, 1}, {1, 1021, 8008, 26299, 46051, 46051, 26299, 8008, 1021, 1}, {1, 2045, 18568, 72107, 154295, 197440, 154295, 72107, 18568, 2045, 1} MATHEMATICA Clear[a, k, m, l] k = 1; m = 2; l = 1; a[0] = {1}; a[1] = {1, 1}; a[n_] := a[n] = k*Join[{0}, a[n - 2], {0}] + m*Join[{-(m - 1)/m}, a[n - 1]] + m*Join[a[n - 1], {-(m - 1)/m}] + If[n >= 4, k*Join[{0, 0}, a[n - 4], {0, 0}], Table[0, {i, 0, n}]]; Table[a[n], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A114123 A324009 A143007 * A176487 A272644 A157177 Adjacent sequences:  A152651 A152652 A152653 * A152655 A152656 A152657 KEYWORD nonn,uned AUTHOR Roger L. Bagula, Dec 10 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 18:28 EDT 2021. Contains 343666 sequences. (Running on oeis4.)