login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114119
Row sums of triangle A114118.
2
1, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105
OFFSET
0,2
COMMENTS
Taken modulo 3 yields 1,0,2,0,2,0,2,0,2,...; a(n) is congruent to 0 or 2 (mod 3) for n > 0.
FORMULA
a(n) = 3*floor((n + 1)/2) + 2*((n+1) mod 2) - 0^n.
a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(floor((n + k + j)/3), k)*binomial(k, floor((n + k + j)/3)).
G.f.: 1 - x*(-3 - 2*x + 2*x^2)/((1 + x)*(x - 1)^2). - R. J. Mathar, Oct 25 2011
E.g.f.: ((4 + 3*x)*cosh(x) + 3*(1 + x)*sinh(x) - 2)/2. - Stefano Spezia, Feb 20 2023
MATHEMATICA
Join[{1, 3}, LinearRecurrence[{1, 1, -1}, {5, 6, 8}, 100]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 13 2005
STATUS
approved