Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:45:52
%S 1,2,7,26,101,402,1625,6638,27319,113054,469811,1958706,8187063,
%T 34290934,143864999,604402050,2542083509,10702020746,45090876913,
%U 190110250998,801997354525,3384971428258,14292950533517,60373808435046,255102065046401,1078202260326002
%N Diagonal sums of number triangle A046521.
%C Hankel transform is A176281.
%H Vincenzo Librandi, <a href="/A176280/b176280.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(2*(n-k),n-k)/C(2*k,k).
%F From _Vaclav Kotesovec_, Oct 21 2012: (Start)
%F G.f.: sqrt(1-4*x)/(1-4*x-x^2).
%F Recurrence: n*a(n) = 2*(4*n-3)*a(n-1) - 3*(5*n-8)*a(n-2) - 2*(2*n-3)*a(n-3).
%F a(n) ~ (2+sqrt(5))^n/(2*sqrt(5)). (End)
%p seq(coeff(series(sqrt(1-4*x)/(1-4*x-x^2), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Nov 24 2019
%t CoefficientList[Series[Sqrt[1-4*x]/(1-4*x-x^2), {x, 0, 30}], x] (* _Vaclav Kotesovec_, Oct 21 2012 *)
%o (PARI) my(x='x+O('x^30)); Vec(sqrt(1-4*x)/(1-4*x-x^2)) \\ _G. C. Greubel_, Nov 24 2019
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)/(1-4*x-x^2) )); // _G. C. Greubel_, Nov 24 2019
%o (Sage)
%o def A176280_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( sqrt(1-4*x)/(1-4*x-x^2) ).list()
%o A176280_list(30) # _G. C. Greubel_, Nov 24 2019
%K nonn,easy
%O 0,2
%A _Paul Barry_, Apr 14 2010