login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349021
G.f. satisfies A(x) = 1/(1 - x/(1 - x*A(x))^2)^4.
1
1, 4, 18, 104, 671, 4624, 33342, 248412, 1897219, 14774152, 116864936, 936390692, 7584216152, 61992689940, 510728310716, 4236545121924, 35354229533389, 296604036437692, 2500154435955614, 21164005790766980, 179841032283906149, 1533499916749203208
OFFSET
0,2
LINKS
FORMULA
If g.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
MAPLE
A349021 := proc(n)
local s, t ;
s := 2 ;
t := 4;
add( binomial(t*n-(t-1)*(k-1), k) * binomial(n+(s-1)*k-1, n-k) /(n-k+1) , k=0..n) ;
end proc:
seq(A349021(n), n=0..40) ; # R. J. Mathar, May 12 2022
PROG
(PARI) a(n, s=2, t=4) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 06 2021
STATUS
approved