OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..972
FORMULA
If g.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
MAPLE
A349022 := proc(n)
add(binomial(4*n-3*(k-1), k)*binomial(n+2*k-1, n-k)/(n-k+1), k=0..n) ;
end proc:
seq(A349022(n), n=0..40) ; # R. J. Mathar, Jan 25 2023
PROG
(PARI) a(n, s=3, t=4) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 06 2021
STATUS
approved