login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039304
Number of distinct quadratic residues mod 7^n.
4
1, 4, 22, 151, 1051, 7354, 51472, 360301, 2522101, 17654704, 123582922, 865080451, 6055563151, 42388942054, 296722594372, 2077058160601, 14539407124201, 101775849869404, 712430949085822, 4987016643600751, 34909116505205251
OFFSET
0,2
COMMENTS
Number of distinct n-digit suffixes of base 7 squares.
FORMULA
a(n) = floor( (7^n + 3)*7/16 ).
G.f.: (1 - 3*x - 7*x^2)/((1-x)*(1+x)*(1-7*x)). - Colin Barker, Mar 08 2012
a(n) = 7*a(n-1) + a(n-2) - 7*a(n-3). - Vincenzo Librandi, Apr 21 2012
a(n) = A000224(7^n). - R. J. Mathar, Sep 28 2017
MAPLE
A039304 := proc(n)
floor((7^n+3)*7/16) ;
end proc:
seq(A039304(n), n=0..10) ; # R. J. Mathar, Sep 28 2017
MATHEMATICA
CoefficientList[Series[(1-3*x-7*x^2)/((1-x)*(1+x)*(1-7*x)), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 21 2012 *)
LinearRecurrence[{7, 1, -7}, {1, 4, 22}, 30] (* Harvey P. Dale, Aug 03 2016 *)
PROG
(Magma) [Floor((7^n+3)*7/16): n in [0..25]]; // Vincenzo Librandi, May 14 2011
(Magma) I:=[1, 4, 22]; [n le 3 select I[n] else 7*Self(n-1)+Self(n-2)-7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 21 2012
CROSSREFS
Cf. A000224, A000420 (7^n).
Sequence in context: A228883 A307439 A189845 * A349022 A267219 A152404
KEYWORD
nonn,easy
STATUS
approved