login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307439
G.f. A(x) satisfies: A(x) = Sum_{j>=0} j!*x^j*A(x)^j / Product_{k=1..j} (1 - k*x).
2
1, 1, 4, 22, 150, 1198, 10900, 111392, 1268816, 16029676, 223672208, 3431679208, 57595357568, 1051552630592, 20766322925296, 441147381668704, 10029896993061488, 242949296094059648, 6244343162806585552, 169693360047016652048, 4860575220802324411120, 146335002352369970686352
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = Sum_{j>=0} x^j * Sum_{k=0..j} k!*Stirling2(j,k)*A(x)^k.
a(n) ~ exp(1/2) * n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Apr 10 2019
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 150*x^4 + 1198*x^5 + 10900*x^6 + 111392*x^7 + 1268816*x^8 + 16029676*x^9 + 223672208*x^10 + ...
MATHEMATICA
terms = 22; A[_] = 1; Do[A[x_] = Sum[j! x^j A[x]^j/Product[(1 - k x), {k, 1, j}], {j, 0, i}] + O[x]^i, {i, 1, terms}]; CoefficientList[A[x], x]
terms = 22; A[_] = 1; Do[A[x_] = Sum[x^j Sum[k! StirlingS2[j, k] A[x]^k, {k, 0, j}], {j, 0, i}] + O[x]^i, {i, 1, terms}]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 08 2019
STATUS
approved