This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111529 Row 2 of table A111528. 15
 1, 1, 4, 22, 148, 1156, 10192, 99688, 1069168, 12468208, 157071424, 2126386912, 30797423680, 475378906432, 7793485765888, 135284756985472, 2479535560687360, 47860569736036096, 970606394944476160, 20635652201785613824, 459015456156148876288, 10662527360021306782720 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Robert Israel, Table of n, a(n) for n = 0..410 Paul Barry, A note on number triangles that are almost their own production matrix, arXiv:1804.06801 [math.CO], 2018. Richard J. Martin, and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315. FORMULA G.f.: (1/2)*log(sum_{n>=0} (n+1)!*x^n) = sum_{n>=1} a(n)*x^n/n. G.f.: 1/(1+2*x - 3*x/(1+3*x - 4*x/(1+4*x -... (continued fraction). a(n) = sum_{k,0<=k<=n} 2^(n-k)*A089949(n,k). - Philippe Deléham, Oct 16 2006 G.f. 1/(2*x-G(0)) where G(k)=  2*x - 1 - k*x - x*(k+1)/G(k+1); G(0)=x (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 14 2012 G.f.: 1/(2*x) - 1/(G(0) - 1) where G(k)= 1 + x*(k+1)/(1 - 1/(1 + 1/G(k+1)));(continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 20 2012 G.f.: 1 + x/(G(0)-2*x) where G(k) = 1 + (k+1)*x - x*(k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2012 G.f.: (1 + 1/Q(0))/2, where Q(k)= 1 + k*x - x*(k+2)/Q(k+1); (continued fraction). In general, the g.f. for row (r+2) is (r+1 + 1/Q(0))/(r+2). - Sergei N. Gladkovskii, May 04 2013 G.f.: W(0), where W(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+3)/( x*(k+3) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013 a(n) ~ n! * n^2/2 * (1 - 1/n - 2/n^2 - 8/n^3 - 52/n^4 - 436/n^5 - 4404/n^6 - 51572/n^7 - 683428/n^8 - 10080068/n^9 - 163471284/n^10), where the coefficients are given by (n+2)*(n+1)/n^2 * Sum_{k>=0} A260491(k)/(n+2)^k. - Vaclav Kotesovec, Jul 27 2015 a(n) = -A077607(n+2)/2. - Vaclav Kotesovec, Jul 29 2015 EXAMPLE (1/2)*log(1 + 2*x + 6*x^2 + ... + (n+1)!/1!*x^n + ...) = x + 4/2*x^2 + 22/3*x^3 + 148/4*x^4 + 1156/5*x^5 + ... MAPLE N:= 30: # to get a(0) to a(N) g:= 1/2*log(add((n+1)!*x^n, n=0..N+1)): S:= series(g, x, N+1); 1, seq(j*coeff(S, x, j), j=0..N); # Robert Israel, Jul 10 2015 MATHEMATICA T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j] T[n-1, k-j], {j, 1, k-1}]]; a[n_] := T[2, n]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 09 2018 *) PROG (PARI) {a(n)=if(n<0, 0, if(n==0, 1, (n/2)*polcoeff(log(sum(m=0, n, (m+1)!/1!*x^m)), n)))} CROSSREFS Cf. A111528 (table), A003319 (row 1), A111530 (row 3), A111531 (row 4), A111532 (row 5), A111533 (row 6), A111534 (diagonal). Cf. A077607, A089949, A260491. Sequence in context: A199418 A112898 A253095 * A228883 A307439 A189845 Adjacent sequences:  A111526 A111527 A111528 * A111530 A111531 A111532 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 06 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 09:05 EST 2019. Contains 329995 sequences. (Running on oeis4.)