login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111532 Row 5 of table A111528. 12
1, 1, 7, 61, 619, 7045, 87955, 1187845, 17192275, 264940405, 4326439075, 74593075525, 1353928981075, 25809901069525, 515683999204675, 10779677853137125, 235366439343773875, 5359766538695291125 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..440

A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.

FORMULA

G.f.: (1/5)*log(Sum_{n>=0} (n+4)!/4!*x^n) = Sum_{n>=1} a(n)*x^n/n.

G.f.: 1/(1 + 5*x - 6*x/(1 + 6*x - 7*x/(1 + 7*x - ... (continued fraction).

a(n) = Sum_{k=0..n} 5^(n-k)*A089949(n,k). - Philippe Deléham, Oct 16 2006

G.f.: (4 + 1/Q(0))/5, where Q(k) = 1 - 3*x + k*x - x*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 04 2013

a(n) ~ n! * n^5/5! * (1 + 5/n - 55/n^3 - 356/n^4 - 3095/n^5 - 35225/n^6 - 475000/n^7 - 7293775/n^8 - 124710375/n^9 - 2339428250/n^10). - Vaclav Kotesovec, Jul 27 2015

From Peter Bala, May 25 2017: (Start)

O.g.f.: A(x) = ( Sum_{n >= 0} (n+5)!/5!*x^n ) / ( Sum_{n >= 0} (n+4)!/4!*x^n ).

1/(1 - 5*x*A(x)) = Sum_{n >= 0} (n+4)!/4!*x^n. Cf. A001720.

A(x)/(1 - 5*x*A(x)) = Sum_{n >= 0} (n+5)!/5!*x^n. Cf. A001725.

A(x) satisfies the Riccati equation x^2*A'(x) + 5*x*A^2(x) - (1 + 4*x)*A(x) + 1 = 0.

G.f. as an S-fraction: A(x) = 1/(1 - x/(1 - 6*x/(1 - 2*x/(1 - 7*x/(1 - 3*x/(1 - 8*x/(1 - ... - n*x/(1 - (n+5)*x/(1 - ... ))))))))), by Stokes 1982.

A(x) = 1/(1 + 5*x - 6*x/(1 - x/(1 - 7*x/(1 - 2*x/(1 - 8*x/(1 - 3*x/(1 - ... - (n + 5)*x/(1 - n*x/(1 - ... ))))))))). (End)

EXAMPLE

(1/5)*(log(1 + 5*x + 30*x^2 + 210*x^3 + ... + (n+4)!/4!)*x^n + ...)

= x + 7/2*x^2 + 61/3*x^3 + 619/4*x^4 + 7045/5*x^5 + ...

MATHEMATICA

m = 18; (-1/(5x)) ContinuedFractionK[-i x, 1 + i x, {i, 5, m+4}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 02 2019 *)

PROG

(PARI) {a(n)=if(n<0, 0, if(n==0, 1, (n/5)*polcoeff(log(sum(m=0, n, (m+4)!/4!*x^m) + x*O(x^n)), n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015

CROSSREFS

Cf: A111528 (table), A003319 (row 1), A111529 (row 2), A111530 (row 3), A111531 (row 4), A111533 (row 6), A111534 (diagonal).

Cf. A001720, A001725.

Sequence in context: A071172 A259335 A127688 * A061634 A049402 A218498

Adjacent sequences:  A111529 A111530 A111531 * A111533 A111534 A111535

KEYWORD

nonn,easy

AUTHOR

Paul D. Hanna, Aug 06 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 15:09 EDT 2022. Contains 357000 sequences. (Running on oeis4.)