login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259335
a(n) = ( Sum_{k=0..n} binomial(2*n, k)^2 * (binomial(2*n, k+1) - binomial(2*n, k-1)) )/(n*binomial(2*n, n)).
2
1, 7, 61, 611, 6686, 77729, 944245, 11859355, 152893720, 2013070126, 26967817306, 366542344117, 5043651762826, 70138959074461, 984384594022117, 13927418363218955, 198459156018467084, 2845950809029225472, 41044332341739034032, 594983281327999736694
OFFSET
1,2
LINKS
H. W. Gould, Problem E2384, Amer. Math. Monthly, 79 (1972), p. 1034.
D. Zeitlin & N. J. A. Sloane, Correspondence, 1974 & 1991
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} (k/(n+k)) * binomial(n+k,k)^2. - Seiichi Manyama, Jul 16 2024
MAPLE
f:=proc(n) local b;
b:=binomial;
add(b(2*n, k)^2*(b(2*n, k+1)-b(2*n, k-1)), k=0..n)/(n*b(2*n, n));
end;
PROG
(PARI) a(n) = sum(k=0, n, k/(n+k)*binomial(n+k, k)^2)/(n+1); \\ Seiichi Manyama, Jul 16 2024
CROSSREFS
Sequence in context: A364430 A077642 A071172 * A127688 A111532 A379996
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 25 2015
STATUS
approved