|
|
A364430
|
|
G.f. satisfies A(x) = 1 - x*A(x)*(1 - 2*A(x)^3).
|
|
3
|
|
|
1, 1, 7, 61, 603, 6443, 72517, 846995, 10170685, 124780525, 1557347467, 19710577873, 252386341335, 3263626001751, 42558647522697, 559032393114023, 7390085367865081, 98242108076244665, 1312529311579827631, 17613845480108029957, 237322279651518516019
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1).
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) +(-566*n^3 +1335*n^2 -1105*n +312)*a(n-1) +3*(943*n^3 -5739*n^2 +11016*n -6748)*a(n-2) +18*(-250*n^3 +2499*n^2 -8233*n +8938)*a(n-3) +27*(n-4)*(31*n^2 -314*n +735)*a(n-4) +81*(10*n -51)*(n-4) *(n-5)*a(n-5) +243*(n-5) *(n-6)*(n-4)*a(n-6)=0. - R. J. Mathar, Jul 25 2023
|
|
MAPLE
|
(-1)^n*add((-2)^k* binomial(n, k) * binomial(n+3*k+1, n) / (n+3*k+1), k=0..n) ;
end proc:
|
|
PROG
|
(PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^k*binomial(n, k)*binomial(n+3*k+1, n)/(n+3*k+1));
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|