login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364437
G.f. satisfies A(x) = 1 - x*(1 - 2*A(x)^3).
2
1, 1, 6, 42, 326, 2712, 23676, 214068, 1987488, 18838464, 181548960, 1773566208, 17523740592, 174814263088, 1758342057504, 17812729393248, 181581358338528, 1861259423846400, 19172185074938112, 198354225907274496, 2060279149742042112
OFFSET
0,3
FORMULA
a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(3*k+1,n) / (3*k+1).
D-finite with recurrence n*(2*n+1)*a(n) +3*(-11*n^2+14*n-4)*a(n-1) +27*(5*n-7) *(n-2)*a(n-2) -27*(7*n-16)*(n-3)*a(n-3) +81*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 25 2023
MAPLE
A364437 := proc(n)
(-1)^n*add((-2)^k* binomial(n, k) * binomial(3*k+1, n) / (3*k+1), k=0..n) ;
end proc:
seq(A364437(n), n=0..70); # R. J. Mathar, Jul 25 2023
PROG
(PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^k*binomial(n, k)*binomial(3*k+1, n)/(3*k+1));
CROSSREFS
Cf. A068764.
Sequence in context: A142985 A118351 A033296 * A218755 A165314 A082302
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 24 2023
STATUS
approved