login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033296
Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (1,2).
3
1, 1, 6, 42, 326, 2706, 23526, 211546, 1951494, 18366882, 175674054, 1702686090, 16686795846, 165079509042, 1646340228006, 16534463822010, 167081444125702, 1697551974416706, 17330661859937670, 177699201786231530
OFFSET
0,3
FORMULA
G.f.: A(x) = 1 + x*D(x)^3, where D(x) is the g.f. of A027307. Also: difference of A027307 and A032349. [Changed formula to include a(0) = 1. - Paul D. Hanna, May 28 2023]
D-finite with recurrence +n*(2*n+1)*a(n) +(-32*n^2+47*n-17)*a(n-1) +2*(55*n^2-223*n+228)*a(n-2) +3*(-4*n^2+33*n-70)*a(n-3) -(2*n-7)*(n-5)*a(n-4)=0. - R. J. Mathar, Jul 24 2022
From Paul D. Hanna, May 28 2023: (Start)
G.f. A(x) = (1/x) * Series_Reversion( x / C(x*C(x)^3) ), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
G.f. A(x) = B(x*A(x)) where B(x) = A(x/B(x)) = C(x*C(x)^3) is the g.f. of A363308, and C(x) is the g.f. of the Catalan numbers (A000108). (End)
EXAMPLE
G.f. A(x) = 1 + x + 6*x^2 + 42*x^3 + 326*x^4 + 2706*x^5 + 23526*x^6 + 211546*x^7 + 1951494*x^8 + 18366882*x^9 + 175674054*x^10 + ...
PROG
(PARI) /* G.f. A(x) = (1/x)*Series_Reversion( x/C(x*C(x)^3) ) */
{a(n) = my(C = (1 - sqrt(1 - 4*x +x^2*O(x^n)))/(2*x)); polcoeff( (1/x)*serreverse(x/subst(C, x, x*C^3)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, May 28 2023
CROSSREFS
KEYWORD
nonn
STATUS
approved