OFFSET
0,3
FORMULA
G.f.: A(x) = 1 + x*D(x)^3, where D(x) is the g.f. of A027307. Also: difference of A027307 and A032349. [Changed formula to include a(0) = 1. - Paul D. Hanna, May 28 2023]
D-finite with recurrence +n*(2*n+1)*a(n) +(-32*n^2+47*n-17)*a(n-1) +2*(55*n^2-223*n+228)*a(n-2) +3*(-4*n^2+33*n-70)*a(n-3) -(2*n-7)*(n-5)*a(n-4)=0. - R. J. Mathar, Jul 24 2022
From Paul D. Hanna, May 28 2023: (Start)
G.f. A(x) = (1/x) * Series_Reversion( x / C(x*C(x)^3) ), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
EXAMPLE
G.f. A(x) = 1 + x + 6*x^2 + 42*x^3 + 326*x^4 + 2706*x^5 + 23526*x^6 + 211546*x^7 + 1951494*x^8 + 18366882*x^9 + 175674054*x^10 + ...
PROG
(PARI) /* G.f. A(x) = (1/x)*Series_Reversion( x/C(x*C(x)^3) ) */
{a(n) = my(C = (1 - sqrt(1 - 4*x +x^2*O(x^n)))/(2*x)); polcoeff( (1/x)*serreverse(x/subst(C, x, x*C^3)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, May 28 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved