The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033296 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (1,2). 2
 1, 1, 6, 42, 326, 2706, 23526, 211546, 1951494, 18366882, 175674054, 1702686090, 16686795846, 165079509042, 1646340228006, 16534463822010, 167081444125702, 1697551974416706, 17330661859937670, 177699201786231530 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..19. FORMULA G.f.: A(x) = 1 + x*D(x)^3, where D(x) is the g.f. of A027307. Also: difference of A027307 and A032349. [Changed formula to include a(0) = 1. - Paul D. Hanna, May 28 2023] D-finite with recurrence +n*(2*n+1)*a(n) +(-32*n^2+47*n-17)*a(n-1) +2*(55*n^2-223*n+228)*a(n-2) +3*(-4*n^2+33*n-70)*a(n-3) -(2*n-7)*(n-5)*a(n-4)=0. - R. J. Mathar, Jul 24 2022 From Paul D. Hanna, May 28 2023: (Start) G.f. A(x) = (1/x) * Series_Reversion( x / C(x*C(x)^3) ), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108). G.f. A(x) = B(x*A(x)) where B(x) = A(x/B(x)) = C(x*C(x)^3) is the g.f. of A363308, and C(x) is the g.f. of the Catalan numbers (A000108). (End) EXAMPLE G.f. A(x) = 1 + x + 6*x^2 + 42*x^3 + 326*x^4 + 2706*x^5 + 23526*x^6 + 211546*x^7 + 1951494*x^8 + 18366882*x^9 + 175674054*x^10 + ... PROG (PARI) /* G.f. A(x) = (1/x)*Series_Reversion( x/C(x*C(x)^3) ) */ {a(n) = my(C = (1 - sqrt(1 - 4*x +x^2*O(x^n)))/(2*x)); polcoeff( (1/x)*serreverse(x/subst(C, x, x*C^3)), n)} for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, May 28 2023 CROSSREFS Cf. A027307, A032349, A363308. Sequence in context: A107266 A142985 A118351 * A364437 A218755 A165314 Adjacent sequences: A033293 A033294 A033295 * A033297 A033298 A033299 KEYWORD nonn AUTHOR Emeric Deutsch STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 11 16:40 EDT 2024. Contains 375836 sequences. (Running on oeis4.)