OFFSET
2,3
COMMENTS
Sums of two consecutive terms are the Catalan numbers.
Prime p divides a(p-1) and a(p+1) for odd primes where 5 is a square mod p (A038872). - Alexander Adamchuk, Jul 01 2006
Hankel transform of 1, 1, 4, ... is A167477.
Hankel transform of a(n+1) (starts 0, 1, 1, 4, ...) is -F(2*n), where F = A000045. - Paul Barry, Dec 16 2008
We could extend the sequence with a(0) = 1, a(1) = 0 so that a(n) + a(n+1) = Catalan(n) for all n >= 0. - Michael Somos, Nov 22 2016
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 2..1000
Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018.
Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, Discrete Mathematics 343(6) (2019), Article 111705.
FORMULA
a(n) = Sum_{i=0..n-2} (-1)^i*C(n-1-i), where C(n) are the Catalan numbers A000108.
G.f.: (1 - 2*z - sqrt(1 - 4*z)) / (2*(1 + z)).
a(n) = Catalan(n-1)*hypergeom([1, -n], [3/2 - n], -1/4) + (-1)^n*3/2. - Erroneous formula replaced by Peter Luschny, Nov 22 2016
D-finite with recurrence n*a(n) = 3*(n-2)*a(n-1) + 2*(2*n-3)*a(n-2). - R. J. Mathar, Nov 30 2012
G.f.: 2/(G(0) - 2*x)/(1 + x), where G(k) = k*(4*x + 1) + 2*x + 2 - x*(2*k + 3)*(2*k + 4)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 06 2013
a(n) = A168377(n,2). - Philippe Deléham, Feb 09 2014
a(n) ~ 4^n/(5*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
EXAMPLE
G.f. = x^2 + x^3 + 4*x^4 + 10*x^5 + 32*x^6 + 100*x^7 + 329*x^8 + 1101*x^9 + ...
MATHEMATICA
Table[Sum[(-1)^(n+k)*(2k)!/k!/(k+1)!, {k, 1, n}], {n, 1, 40}] (* Alexander Adamchuk, Jul 01 2006 *)
Rest[Rest[CoefficientList[Series[(1-2*x-Sqrt[1-4*x])/(2*(1+x)), {x, 0, 40}], x]]] (* Vaclav Kotesovec, Feb 13 2014 *)
Table[CatalanNumber[n-1] Hypergeometric2F1[1, -n, 3/2-n, -1/4] +(-1)^n 3/2, {n, 2, 40}] (* Peter Luschny, Nov 22 2016 *)
PROG
(PARI) my(x='x+O('x^66)); Vec((1-2*x-sqrt(1-4*x))/(2*(1+x))) /* Joerg Arndt, Apr 07 2013 */
(Magma) [(-1)^(n+1)*(&+[(-1)^j*Catalan(j): j in [1..n-1]]): n in [2..40]]; // G. C. Greubel, May 30 2022
(SageMath) [sum((-1)^j*catalan_number(n-j-1) for j in (0..n-2)) for n in (2..40)] # G. C. Greubel, May 30 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected Hankel transform by Paul Barry, Nov 04 2009
STATUS
approved