login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033297
Number of ordered rooted trees with n edges such that the rightmost leaf of each subtree is at even level. Equivalently, number of Dyck paths of semilength n with no return descents of odd length.
8
1, 1, 4, 10, 32, 100, 329, 1101, 3761, 13035, 45751, 162261, 580639, 2093801, 7601044, 27756626, 101888164, 375750536, 1391512654, 5172607766, 19293659254, 72188904386, 270870709264, 1019033438060, 3842912963392
OFFSET
2,3
COMMENTS
Sums of two consecutive terms are the Catalan numbers.
Prime p divides a(p-1) and a(p+1) for odd primes where 5 is a square mod p (A038872). - Alexander Adamchuk, Jul 01 2006
Hankel transform of 1, 1, 4, ... is A167477.
Hankel transform of a(n+1) (starts 0, 1, 1, 4, ...) is -F(2*n), where F = A000045. - Paul Barry, Dec 16 2008
We could extend the sequence with a(0) = 1, a(1) = 0 so that a(n) + a(n+1) = Catalan(n) for all n >= 0. - Michael Somos, Nov 22 2016
LINKS
Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018.
Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, Discrete Mathematics 343(6) (2019), Article 111705.
FORMULA
a(n) = Sum_{i=0..n-2} (-1)^i*C(n-1-i), where C(n) are the Catalan numbers A000108.
G.f.: (1 - 2*z - sqrt(1 - 4*z)) / (2*(1 + z)).
a(n) = Catalan(n-1)*hypergeom([1, -n], [3/2 - n], -1/4) + (-1)^n*3/2. - Erroneous formula replaced by Peter Luschny, Nov 22 2016
D-finite with recurrence n*a(n) = 3*(n-2)*a(n-1) + 2*(2*n-3)*a(n-2). - R. J. Mathar, Nov 30 2012
G.f.: 2/(G(0) - 2*x)/(1 + x), where G(k) = k*(4*x + 1) + 2*x + 2 - x*(2*k + 3)*(2*k + 4)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 06 2013
a(n) = A168377(n,2). - Philippe Deléham, Feb 09 2014
a(n) ~ 4^n/(5*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
EXAMPLE
G.f. = x^2 + x^3 + 4*x^4 + 10*x^5 + 32*x^6 + 100*x^7 + 329*x^8 + 1101*x^9 + ...
MATHEMATICA
Table[Sum[(-1)^(n+k)*(2k)!/k!/(k+1)!, {k, 1, n}], {n, 1, 40}] (* Alexander Adamchuk, Jul 01 2006 *)
Rest[Rest[CoefficientList[Series[(1-2*x-Sqrt[1-4*x])/(2*(1+x)), {x, 0, 40}], x]]] (* Vaclav Kotesovec, Feb 13 2014 *)
Table[CatalanNumber[n-1] Hypergeometric2F1[1, -n, 3/2-n, -1/4] +(-1)^n 3/2, {n, 2, 40}] (* Peter Luschny, Nov 22 2016 *)
PROG
(PARI) my(x='x+O('x^66)); Vec((1-2*x-sqrt(1-4*x))/(2*(1+x))) /* Joerg Arndt, Apr 07 2013 */
(Magma) [(-1)^(n+1)*(&+[(-1)^j*Catalan(j): j in [1..n-1]]): n in [2..40]]; // G. C. Greubel, May 30 2022
(SageMath) [sum((-1)^j*catalan_number(n-j-1) for j in (0..n-2)) for n in (2..40)] # G. C. Greubel, May 30 2022
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Corrected Hankel transform by Paul Barry, Nov 04 2009
STATUS
approved