login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295404
G.f. A(x) satisfies: A(x) = A(x)^2 - x*A(x)^3 + x^2.
3
1, 1, 1, 4, 10, 32, 95, 306, 978, 3235, 10767, 36470, 124514, 429648, 1492944, 5225700, 18396350, 65115694, 231555165, 826956617, 2964543205, 10664540170, 38484972969, 139281469165, 505408580484, 1838442927937, 6702466323520, 24486411113076, 89630823136513, 328680670354328, 1207323483992684, 4441801238353311, 16365832987077134, 60384021404260146, 223087697417538491
OFFSET
0,4
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 - x^2/A(x).
a(n) ~ sqrt((s^3 - 2*r)/(Pi*(3*r*s - 1))) / (2*n^(3/2)*r^(n - 1/2)), where r = 0.2590976379022320530812109572925567785373263490686... and s = 1.89364715749587181948481325332597309754099061462... are real roots of the system of equations r^2 + s^2 = s + r*s^3, 1 + 3*r*s^2 = 2*s. - Vaclav Kotesovec, Nov 23 2017
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 10*x^4 + 32*x^5 + 95*x^6 + 306*x^7 + 978*x^8 + 3235*x^9 + 10767*x^10 + 36470*x^11 + 124514*x^12 + 429648*x^13 + 1492944*x^14 + 5225700*x^15 + 18396350*x^16 + 65115694*x^17 + 231555165*x^18 + 826956617*x^19 + 2964543205*x^20 +...
such that A(x) = A(x)^2 - x*A(x)^3 + x^2.
RELATED SERIES.
1/A(x) = 1 - x - 3*x^3 - 3*x^4 - 16*x^5 - 32*x^6 - 121*x^7 - 329*x^8 - 1138*x^9 - 3546*x^10 - 12097*x^11 - 40112*x^12 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 10*x^3 + 29*x^4 + 92*x^5 + 290*x^6 + 946*x^7 + 3114*x^8 + 10438*x^9 + 35332*x^10 + 120968*x^11 + 417551*x^12 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 19*x^3 + 60*x^4 + 195*x^5 + 640*x^6 + 2136*x^7 + 7203*x^8 + 24565*x^9 + 84498*x^10 + 293037*x^11 + 1023184*x^12 +...
where A(x) = 1 + x*A(x)^2 - x^2/A(x).
Series_Reversion(x*A(x)) = x - x^2 + x^3 - 4*x^4 + 10*x^5 - 32*x^6 + 107*x^7 - 360*x^8 + 1270*x^9 - 4544*x^10 + 16537*x^11 - 61092*x^12 + 228084*x^13 - 860056*x^14 + 3269994*x^15 +...+ (-1)^(n-1)*A137954(n-1)*x^n +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A = 1 + x*A^2 - x^2/A +x*O(x^n)); polcoeff(G=A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A137954.
Sequence in context: A015796 A318562 A034717 * A001673 A017936 A033297
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 21 2017
STATUS
approved