login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295407
a(n) = n! * Laguerre(n, 3*n, -n).
7
1, 5, 92, 2859, 124832, 7018105, 482598720, 39236322839, 3681751480832, 391611920476653, 46560370087846400, 6119025385880816035, 880818377346674454528, 137824220501484017301281, 23291983597732334528110592, 4228010378355969165140319375
OFFSET
0,2
FORMULA
a(n) = n!*Sum_{k=0..n} binomial(4*n,n-k)*n^k/k!.
a(n) ~ sqrt(1/2 + 3/(2*sqrt(5))) * (8*(sqrt(5)-1))^n * exp((sqrt(5)-3)*n) * n^n.
a(n) = n! * [x^n] exp(n*x/(1 - x))/(1 - x)^(3*n+1). - Ilya Gutkovskiy, Nov 23 2017
MATHEMATICA
Table[n!*LaguerreL[n, 3*n, -n], {n, 0, 15}]
Join[{1}, Table[n!*Sum[Binomial[4*n, n-k]*n^k/k!, {k, 0, n}], {n, 1, 15}]]
PROG
(PARI) for(n=0, 30, print1(n!*sum(k=0, n, binomial(4*n, n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018
(PARI) a(n) = n!*pollaguerre(n, 3*n, -n); \\ Michel Marcus, Feb 05 2021
(Magma) [Factorial(n)*(&+[Binomial(4*n, n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 22 2017
STATUS
approved