login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118351
Central terms of pendular triangle A118350.
5
1, 1, 6, 42, 325, 2688, 23286, 208659, 1918314, 17994264, 171542460, 1657212768, 16188521454, 159634359415, 1586932321578, 15886925400954, 160026976985205, 1620715748715648, 16493797802077032, 168583560794745684
OFFSET
0,3
LINKS
FORMULA
G.f. A=A(x) satisfies: A = 1 - 3*x*A + 3*x*A^2 + x*A^3.
G.f.: 1 + Series_Reversion( x/((1+x)*(1+5*x+x^2)) ).
G.f.: (1/x)*Series_Reversion( x*(1-3*x+sqrt((1-3*x)*(1-7*x)))/2/(1-3*x) ).
For n>0: a(n) = 1/n*sum(j=0..n, C(n,j) *sum(i=0..(n-1), C(j,i)*C(n-j,2*j-n-i-1) *6^(2*n-3*j+2*i+1))). - Vladimir Kruchinin, Dec 26 2010
a(n) ~ s^(3/2) / (3*sqrt(2*Pi*(1 + 3*s + 3*s^2)) * n^(3/2) * r^(n+1)), where s = 2*sin(Pi/6 + arctan(sqrt(7)/3)/3) - 1, r = 2*s/(9 - 12*sin(Pi/6 - 2*arctan(sqrt(7)/3)/3)). - Vaclav Kotesovec, Feb 18 2021
MATHEMATICA
T[n_, k_, p_]:= T[n, k, p] = If[n<k || k<0, 0, If[k==0, 1, If[k==n, 0, If[n<=2*k, T[n, n-k-1, p] + p*T[n-1, k, p], T[n, n-k, p] + T[n-1, k, p] ]]]];
Table[T[2*n, n, 3], {n, 0, 30}] (* G. C. Greubel, Feb 18 2021 *)
Join[{1}, Rest@CoefficientList[InverseSeries[Series[ x/((1+x)*(1+5*x+x^2)), {x, 0, 30}]], x]] (* G. C. Greubel, Feb 18 2021 *)
PROG
(PARI) {a(n)=polcoeff((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)+x*O(x^n)))/2/(1-3*x))/x), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(1 + serreverse( x/((1+x)*(1+5*x+x^2 +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
(Sage)
def S_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (x/((1+x)*(1+5*x+x^2))).reverse() ).list()
a=S_list(31); [1]+a[1:] # G. C. Greubel, Feb 18 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
[1] cat Coefficients(R!( Reversion( x/((1+x)*(1+5*x+x^2)) ) )); // G. C. Greubel, Feb 18 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 26 2006
STATUS
approved