login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Central terms of pendular triangle A118350.
5

%I #25 Feb 19 2021 03:53:16

%S 1,1,6,42,325,2688,23286,208659,1918314,17994264,171542460,1657212768,

%T 16188521454,159634359415,1586932321578,15886925400954,

%U 160026976985205,1620715748715648,16493797802077032,168583560794745684

%N Central terms of pendular triangle A118350.

%H G. C. Greubel, <a href="/A118351/b118351.txt">Table of n, a(n) for n = 0..500</a>

%F G.f. A=A(x) satisfies: A = 1 - 3*x*A + 3*x*A^2 + x*A^3.

%F G.f.: 1 + Series_Reversion( x/((1+x)*(1+5*x+x^2)) ).

%F G.f.: (1/x)*Series_Reversion( x*(1-3*x+sqrt((1-3*x)*(1-7*x)))/2/(1-3*x) ).

%F For n>0: a(n) = 1/n*sum(j=0..n, C(n,j) *sum(i=0..(n-1), C(j,i)*C(n-j,2*j-n-i-1) *6^(2*n-3*j+2*i+1))). - _Vladimir Kruchinin_, Dec 26 2010

%F a(n) ~ s^(3/2) / (3*sqrt(2*Pi*(1 + 3*s + 3*s^2)) * n^(3/2) * r^(n+1)), where s = 2*sin(Pi/6 + arctan(sqrt(7)/3)/3) - 1, r = 2*s/(9 - 12*sin(Pi/6 - 2*arctan(sqrt(7)/3)/3)). - _Vaclav Kotesovec_, Feb 18 2021

%t T[n_, k_, p_]:= T[n,k,p] = If[n<k || k<0, 0, If[k==0, 1, If[k==n, 0, If[n<=2*k, T[n,n-k-1,p] + p*T[n-1,k,p], T[n,n-k,p] + T[n-1,k,p] ]]]];

%t Table[T[2*n,n,3], {n,0,30}] (* _G. C. Greubel_, Feb 18 2021 *)

%t Join[{1}, Rest@CoefficientList[InverseSeries[Series[ x/((1+x)*(1+5*x+x^2)), {x,0,30}]], x]] (* _G. C. Greubel_, Feb 18 2021 *)

%o (PARI) {a(n)=polcoeff((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)+x*O(x^n)))/2/(1-3*x))/x),n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) {a(n)=polcoeff(1 + serreverse( x/((1+x)*(1+5*x+x^2 +x*O(x^n)))),n)}

%o for(n=0,30,print1(a(n),", "))

%o (Sage)

%o def S_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (x/((1+x)*(1+5*x+x^2))).reverse() ).list()

%o a=S_list(31); [1]+a[1:] # _G. C. Greubel_, Feb 18 2021

%o (Magma)

%o R<x>:=PowerSeriesRing(Rationals(), 30);

%o [1] cat Coefficients(R!( Reversion( x/((1+x)*(1+5*x+x^2)) ) )); // _G. C. Greubel_, Feb 18 2021

%Y Cf. A118350, A118352, A118353, A118354.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Apr 26 2006