login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118353
Semi-diagonal (two rows below central terms) of pendular triangle A118350 and equal to the self-convolution cube of the central terms (A118351).
5
1, 3, 21, 163, 1353, 11760, 105681, 973953, 9154821, 87428388, 845894700, 8273978100, 81682757317, 812829371205, 8144563709391, 82104333340467, 832125695906313, 8473862660311392, 86661931504395228, 889705959333345756
OFFSET
0,2
LINKS
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n, 0, T[n-1, k] - 3*T[n-1, k-1] + 3*T[n, k-1] + T[n+1, k-1] ]];
Table[T[n, n-3], {n, 3, 30}] (* G. C. Greubel, Feb 18 2021 *)
PROG
(PARI) my(x='x+O('x^33)); Vec((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)))/2/(1-3*x))/x)^3)
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or n<k): return 0
elif (k==0): return 1
elif (k==n): return 0
else: return T(n-1, k) - 3*T(n-1, k-1) + 3*T(n, k-1) + T(n+1, k-1)
[T(n, n-3) for n in (3..30)] # G. C. Greubel, Feb 18 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 26 2006
STATUS
approved