|
|
A364429
|
|
a(0) = 1, a(n) = (2*n^5 + 20*n^3 + 23*n) * 2/15 for n>=1.
|
|
0
|
|
|
1, 6, 36, 146, 456, 1182, 2668, 5418, 10128, 17718, 29364, 46530, 71000, 104910, 150780, 211546, 290592, 391782, 519492, 678642, 874728, 1113854, 1402764, 1748874, 2160304, 2645910, 3215316, 3878946, 4648056, 5534766, 6552092, 7713978, 9035328, 10532038, 12221028
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is the 6th n-orthoplex (n-dimensional cross-polytope) number.
|
|
LINKS
|
|
|
FORMULA
|
a(0) = 1, a(n) = (2*n^5 + 20*n^3 + 23*n) * 2/15 for n>=1.
G.f.: (1 + 15*x^2 + 15*x^4 + x^6)/(1 - x)^6. - Stefano Spezia, Jul 24 2023
|
|
EXAMPLE
|
a(3) = 146 since the 6th octahedral number is 146; A005900(6) = 146.
a(4) = 456 since the 6th 16-cell number is 456; A014820(5) = 456.
|
|
MATHEMATICA
|
Prepend[Table[2/15 (2 x^5 + 20 x^3 + 23 x), {x, 100}], 1]
|
|
PROG
|
(Python)
print([1]+[(2*i**5+20*i**3+23*i)*2//15 for i in range(1, 101)])
|
|
CROSSREFS
|
Cf. A142978 (column 6 with an initial 1).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|