login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364429
a(0) = 1, a(n) = (2*n^5 + 20*n^3 + 23*n) * 2/15 for n>=1.
0
1, 6, 36, 146, 456, 1182, 2668, 5418, 10128, 17718, 29364, 46530, 71000, 104910, 150780, 211546, 290592, 391782, 519492, 678642, 874728, 1113854, 1402764, 1748874, 2160304, 2645910, 3215316, 3878946, 4648056, 5534766, 6552092, 7713978, 9035328, 10532038, 12221028
OFFSET
0,2
COMMENTS
a(n) is the 6th n-orthoplex (n-dimensional cross-polytope) number.
FORMULA
a(0) = 1, a(n) = (2*n^5 + 20*n^3 + 23*n) * 2/15 for n>=1.
G.f.: (1 + 15*x^2 + 15*x^4 + x^6)/(1 - x)^6. - Stefano Spezia, Jul 24 2023
EXAMPLE
a(3) = 146 since the 6th octahedral number is 146; A005900(6) = 146.
a(4) = 456 since the 6th 16-cell number is 456; A014820(5) = 456.
MATHEMATICA
Prepend[Table[2/15 (2 x^5 + 20 x^3 + 23 x), {x, 100}], 1]
PROG
(Python)
print([1]+[(2*i**5+20*i**3+23*i)*2//15 for i in range(1, 101)])
CROSSREFS
Cf. A142978 (column 6 with an initial 1).
Sequence in context: A056375 A360588 A321579 * A018214 A181478 A223841
KEYWORD
nonn,easy
AUTHOR
Steven Lu, Jul 24 2023
STATUS
approved