login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364431
G.f. satisfies A(x) = 1 + x*A(x)*(1 + 2*A(x)^3).
3
1, 3, 27, 351, 5319, 87885, 1535517, 27898101, 521740197, 9977087439, 194191054263, 3834392341779, 76619557946475, 1546479815079321, 31482877148802873, 645689728734541929, 13328555370318744777, 276704344407952939131, 5773556701375333682355
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} 2^k * binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1).
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) +(-458*n^3 +201*n^2 +401*n -216)*a(n-1) +3*(-1105*n^3 +6549*n^2 -11384*n +5796)*a(n-2) +18*(-262*n^3 +2877*n^2 -10295*n +12006)*a(n-3) +27*(n-4)*(31*n^2 -314*n +735)*a(n-4) -81*(10*n-51) *(n-4)*(n-5)*a(n-5) +243*(n-5)*(n-6) *(n-4)*a(n-6)=0. - R. J. Mathar, Jul 25 2023
MAPLE
A364431 := proc(n)
add(2^k* binomial(n, k) * binomial(n+3*k+1, n) / (n+3*k+1), k=0..n) ;
end proc:
seq(A364431(n), n=0..70); # R. J. Mathar, Jul 25 2023
PROG
(PARI) a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(n+3*k+1, n)/(n+3*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 24 2023
STATUS
approved