The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A364431 G.f. satisfies A(x) = 1 + x*A(x)*(1 + 2*A(x)^3). 3
 1, 3, 27, 351, 5319, 87885, 1535517, 27898101, 521740197, 9977087439, 194191054263, 3834392341779, 76619557946475, 1546479815079321, 31482877148802873, 645689728734541929, 13328555370318744777, 276704344407952939131, 5773556701375333682355 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..18. FORMULA a(n) = Sum_{k=0..n} 2^k * binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1). D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) +(-458*n^3 +201*n^2 +401*n -216)*a(n-1) +3*(-1105*n^3 +6549*n^2 -11384*n +5796)*a(n-2) +18*(-262*n^3 +2877*n^2 -10295*n +12006)*a(n-3) +27*(n-4)*(31*n^2 -314*n +735)*a(n-4) -81*(10*n-51) *(n-4)*(n-5)*a(n-5) +243*(n-5)*(n-6) *(n-4)*a(n-6)=0. - R. J. Mathar, Jul 25 2023 MAPLE A364431 := proc(n) add(2^k* binomial(n, k) * binomial(n+3*k+1, n) / (n+3*k+1), k=0..n) ; end proc: seq(A364431(n), n=0..70); # R. J. Mathar, Jul 25 2023 PROG (PARI) a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(n+3*k+1, n)/(n+3*k+1)); CROSSREFS Cf. A103210, A348912. Cf. A364430, A364432. Sequence in context: A354658 A307650 A168593 * A328182 A372201 A370288 Adjacent sequences: A364428 A364429 A364430 * A364432 A364433 A364434 KEYWORD nonn AUTHOR Seiichi Manyama, Jul 24 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 18:41 EDT 2024. Contains 373410 sequences. (Running on oeis4.)