login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328182
Expansion of e.g.f. 1 / (2 - exp(3*x)).
7
1, 3, 27, 351, 6075, 131463, 3413907, 103429791, 3581223435, 139498558263, 6037616347587, 287444492409231, 14929010774254395, 839982382565841063, 50897213545996785267, 3304312091004451756671, 228821504027595115886955, 16836102104577636004291863, 1311625494765417347634022947
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} 3^k * binomial(n,k) * a(n-k).
a(n) = Sum_{k>=0} (3*k)^n / 2^(k + 1).
a(n) = 3^n * A000670(n).
a(n) ~ n! * 3^n / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Aug 09 2021
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*3^j, j=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Oct 06 2019
MATHEMATICA
nmax = 18; CoefficientList[Series[1/(2 - Exp[3 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[3^k Binomial[n, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
Table[3^n HurwitzLerchPhi[1/2, -n, 0]/2, {n, 0, 18}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 06 2019
STATUS
approved