The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328182 Expansion of e.g.f. 1 / (2 - exp(3*x)). 7
 1, 3, 27, 351, 6075, 131463, 3413907, 103429791, 3581223435, 139498558263, 6037616347587, 287444492409231, 14929010774254395, 839982382565841063, 50897213545996785267, 3304312091004451756671, 228821504027595115886955, 16836102104577636004291863, 1311625494765417347634022947 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..18. FORMULA a(0) = 1; a(n) = Sum_{k=1..n} 3^k * binomial(n,k) * a(n-k). a(n) = Sum_{k>=0} (3*k)^n / 2^(k + 1). a(n) = 3^n * A000670(n). a(n) ~ n! * 3^n / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Aug 09 2021 MAPLE a:= proc(n) option remember; `if`(n=0, 1, add( a(n-j)*binomial(n, j)*3^j, j=1..n)) end: seq(a(n), n=0..20); # Alois P. Heinz, Oct 06 2019 MATHEMATICA nmax = 18; CoefficientList[Series[1/(2 - Exp[3 x]), {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = Sum[3^k Binomial[n, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}] Table[3^n HurwitzLerchPhi[1/2, -n, 0]/2, {n, 0, 18}] CROSSREFS Cf. A000670, A216794, A247452, A328183. Sequence in context: A307650 A168593 A364431 * A372201 A370288 A157089 Adjacent sequences: A328179 A328180 A328181 * A328183 A328184 A328185 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Oct 06 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 19:43 EDT 2024. Contains 373410 sequences. (Running on oeis4.)