The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157089 Consider all Consecutive Integer Pythagorean septuples (X, X+1, X+2, X+3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives Z values. 4
3, 27, 363, 5043, 70227, 978123, 13623483, 189750627, 2642885283, 36810643323, 512706121227, 7141075053843, 99462344632563, 1385331749802027, 19295182152595803, 268747218386539203, 3743165875258953027 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
For n > 1, a(n) = 14*a(n-1) - a(n-2) - 12; e.g., 5043 = 14*363 - 27 - 12. In general, the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: let last(0)=0, last(1)=k*(2k+3) and, for n > 1, last(n) = (4k+2)*last(n-1) - last(n-2) - 2*k*(k-1); e.g., if k=4, then last(2) = 764 = 18*44 - 4 - 24.
For n > 0, a(n) = 8*a(n-1) + 7*A157088(n-1)+6; e.g., 5043 = 8*312 + 7*363 + 6.
In general, the first and last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0 and last(0)=k; for n > 0, let first(n) = (2k+1)*first(n-1) + 2k*last(n-1) + k and last(n) = (2k+2)*first(n-1) + (2k+1)*last(n-1) + 2k; e.g., if k=4 and n=2, then first(2) = 680 = 9*36 + 8*44 + 4 and last(2) = 764 = 10*36 + 9*44 + 8.
a(n) = 3^n*4((1+sqrt(4/3))^(2n+1) - (1-sqrt(4/3))^(2n+1))/(4*sqrt(4/3)) + 2/2; e.g., 363 = 3^2*4((1+sqrt((4/3))^5 - (1-sqrt(4/3))^5)/(4*sqrt(4/3)) + 2/2. In general, the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: if q = (k+1)/k, then last(n) = k^n*(k+1)*((1+sqrt(q))^(2*n+1) - (1-sqrt(q))^(2*n+1))/(4*sqrt(q)) + (k-1)/2; e.g., if k=4 and n=2, then last(2) = 764 = 4^2*5((1+sqrt((5/4))^5 - (1-sqrt(5/4))^5)/(4*sqrt(5/4)) + 3/2.
In general, if u(n) is the numerator and e(n) is the denominator of the n-th continued fraction fraction to sqrt((k+1)/k), then the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows:
last(2n+1) = (e(2n+1)^2 + k^2*e(2n)^2 + k*(k-1)*e(2n+1)*e(n))/k and, for n > 0, last(2n) = (k*(u(2n)^2 + u(2n-1)^2 + (k-1)*u(2n)*u(2n-1)))/(k+1); e.g., a(3) = 5043 = (84^2 + 3^2*13^2 + 3*2*84*13)/3 and a(4) = 70227 = (3*(209^2 + 97^2 + 2*209*97))/4.
In general, if b(0)=1, b(1)=4k+2 and, for n > 1, b(n) = (4k+2)*b(n-1) - b(n-2), and last(n) is the last term of the n-th Consecutive Integer Pythagorean 2k+1-tuple as defined above, then Sum_{i=0..n} (k*last(i) - k(k-1)/2) = k(k+1)/2*b(n); e.g., if n=3, then 1+2+3+25+26+27+361+362+363 = 1170 = 6*195.
Lim_{n->infinity} a(n+1)/a(n) = 3*(1+sqrt(4/3))^2 = 7 + 2*sqrt(12).
In general, if first(n) is the first term of the n-th Consecutive Integer Pythagorean 2k+1-tuple, then lim_{n->infinity} first(n+1)/first(n) = k*(1+sqrt((k+1)/k))^2 = 2k + 1 + 2*sqrt(k^2+k).
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
LINKS
Tanya Khovanova, Recursive Sequences
FORMULA
Empirical g.f.: (3-18*x+3*x^2)/(1-15*x+15*x^2-x^3). - Colin Barker, Jan 01 2012
EXAMPLE
a(3)=363 since 312^2 + 313^2 + 314^2 + 315^2 = 361^2 + 362^2 + 363^2.
MATHEMATICA
LinearRecurrence[{15, -15, 1}, {3, 27, 363}, 20] (* Harvey P. Dale, May 14 2022 *)
CROSSREFS
Sequence in context: A328182 A372201 A370288 * A365794 A138436 A141057
KEYWORD
nonn
AUTHOR
Charlie Marion, Mar 12 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 18:36 EDT 2024. Contains 372952 sequences. (Running on oeis4.)