login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157089
Consider all Consecutive Integer Pythagorean septuples (X, X+1, X+2, X+3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives Z values.
4
3, 27, 363, 5043, 70227, 978123, 13623483, 189750627, 2642885283, 36810643323, 512706121227, 7141075053843, 99462344632563, 1385331749802027, 19295182152595803, 268747218386539203, 3743165875258953027
OFFSET
0,1
COMMENTS
For n > 1, a(n) = 14*a(n-1) - a(n-2) - 12; e.g., 5043 = 14*363 - 27 - 12. In general, the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: let last(0)=0, last(1)=k*(2k+3) and, for n > 1, last(n) = (4k+2)*last(n-1) - last(n-2) - 2*k*(k-1); e.g., if k=4, then last(2) = 764 = 18*44 - 4 - 24.
For n > 0, a(n) = 8*a(n-1) + 7*A157088(n-1)+6; e.g., 5043 = 8*312 + 7*363 + 6.
In general, the first and last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0 and last(0)=k; for n > 0, let first(n) = (2k+1)*first(n-1) + 2k*last(n-1) + k and last(n) = (2k+2)*first(n-1) + (2k+1)*last(n-1) + 2k; e.g., if k=4 and n=2, then first(2) = 680 = 9*36 + 8*44 + 4 and last(2) = 764 = 10*36 + 9*44 + 8.
a(n) = 3^n*4((1+sqrt(4/3))^(2n+1) - (1-sqrt(4/3))^(2n+1))/(4*sqrt(4/3)) + 2/2; e.g., 363 = 3^2*4((1+sqrt((4/3))^5 - (1-sqrt(4/3))^5)/(4*sqrt(4/3)) + 2/2. In general, the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: if q = (k+1)/k, then last(n) = k^n*(k+1)*((1+sqrt(q))^(2*n+1) - (1-sqrt(q))^(2*n+1))/(4*sqrt(q)) + (k-1)/2; e.g., if k=4 and n=2, then last(2) = 764 = 4^2*5((1+sqrt((5/4))^5 - (1-sqrt(5/4))^5)/(4*sqrt(5/4)) + 3/2.
In general, if u(n) is the numerator and e(n) is the denominator of the n-th continued fraction fraction to sqrt((k+1)/k), then the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows:
last(2n+1) = (e(2n+1)^2 + k^2*e(2n)^2 + k*(k-1)*e(2n+1)*e(n))/k and, for n > 0, last(2n) = (k*(u(2n)^2 + u(2n-1)^2 + (k-1)*u(2n)*u(2n-1)))/(k+1); e.g., a(3) = 5043 = (84^2 + 3^2*13^2 + 3*2*84*13)/3 and a(4) = 70227 = (3*(209^2 + 97^2 + 2*209*97))/4.
In general, if b(0)=1, b(1)=4k+2 and, for n > 1, b(n) = (4k+2)*b(n-1) - b(n-2), and last(n) is the last term of the n-th Consecutive Integer Pythagorean 2k+1-tuple as defined above, then Sum_{i=0..n} (k*last(i) - k(k-1)/2) = k(k+1)/2*b(n); e.g., if n=3, then 1+2+3+25+26+27+361+362+363 = 1170 = 6*195.
Lim_{n->infinity} a(n+1)/a(n) = 3*(1+sqrt(4/3))^2 = 7 + 2*sqrt(12).
In general, if first(n) is the first term of the n-th Consecutive Integer Pythagorean 2k+1-tuple, then lim_{n->infinity} first(n+1)/first(n) = k*(1+sqrt((k+1)/k))^2 = 2k + 1 + 2*sqrt(k^2+k).
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
FORMULA
Empirical g.f.: (3-18*x+3*x^2)/(1-15*x+15*x^2-x^3). - Colin Barker, Jan 01 2012
EXAMPLE
a(3)=363 since 312^2 + 313^2 + 314^2 + 315^2 = 361^2 + 362^2 + 363^2.
MATHEMATICA
LinearRecurrence[{15, -15, 1}, {3, 27, 363}, 20] (* Harvey P. Dale, May 14 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Charlie Marion, Mar 12 2009
STATUS
approved