login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348912
G.f. A(x) satisfies A(x) = (1 + 2 * x * A(x)^3) / (1 - x).
4
1, 3, 21, 201, 2217, 26535, 335001, 4391553, 59203137, 815580507, 11430639165, 162470033625, 2336381642649, 33930648153615, 496935405133617, 7331179445170689, 108846406625097729, 1625145134034548019, 24385673680861258533, 367546405595389076649, 5561980053932228243529
OFFSET
0,2
LINKS
FORMULA
a(0) = 1; a(n) = a(n-1) + 2 * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) ~ sqrt(-50 + 30*sqrt(3) + (22 - 12*sqrt(3))*(2*(sqrt(3) - 1))^(1/3) + (2*(sqrt(3) - 1))^(2/3)*(-11 + 7*sqrt(3)))/(4*sqrt(3*Pi)*(-1 + sqrt(3))^(3/2) * n^(3/2) * (1 + (3*(-1 + sqrt(3))^(1/3))/2^(2/3) - 3/(2*(-1 + sqrt(3)))^(1/3))^n). - Vaclav Kotesovec, Nov 04 2021
a(n) = Sum_{k=0..n} 2^k * binomial(n,k) * binomial(n+2*k+1,n) / (n+2*k+1). - Seiichi Manyama, Jul 24 2023
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = (1 + 2 x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + 2 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]
PROG
(PARI) a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(n+2*k+1, n)/(n+2*k+1)); \\ Seiichi Manyama, Jul 24 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 03 2021
STATUS
approved