login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies A(x) = (1 + 2 * x * A(x)^3) / (1 - x).
4

%I #12 Jul 24 2023 09:22:36

%S 1,3,21,201,2217,26535,335001,4391553,59203137,815580507,11430639165,

%T 162470033625,2336381642649,33930648153615,496935405133617,

%U 7331179445170689,108846406625097729,1625145134034548019,24385673680861258533,367546405595389076649,5561980053932228243529

%N G.f. A(x) satisfies A(x) = (1 + 2 * x * A(x)^3) / (1 - x).

%H Seiichi Manyama, <a href="/A348912/b348912.txt">Table of n, a(n) for n = 0..828</a>

%F a(0) = 1; a(n) = a(n-1) + 2 * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).

%F a(n) ~ sqrt(-50 + 30*sqrt(3) + (22 - 12*sqrt(3))*(2*(sqrt(3) - 1))^(1/3) + (2*(sqrt(3) - 1))^(2/3)*(-11 + 7*sqrt(3)))/(4*sqrt(3*Pi)*(-1 + sqrt(3))^(3/2) * n^(3/2) * (1 + (3*(-1 + sqrt(3))^(1/3))/2^(2/3) - 3/(2*(-1 + sqrt(3)))^(1/3))^n). - _Vaclav Kotesovec_, Nov 04 2021

%F a(n) = Sum_{k=0..n} 2^k * binomial(n,k) * binomial(n+2*k+1,n) / (n+2*k+1). - _Seiichi Manyama_, Jul 24 2023

%t nmax = 20; A[_] = 0; Do[A[x_] = (1 + 2 x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

%t a[0] = 1; a[n_] := a[n] = a[n - 1] + 2 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]

%o (PARI) a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(n+2*k+1, n)/(n+2*k+1)); \\ _Seiichi Manyama_, Jul 24 2023

%Y Cf. A001764, A103210, A153231, A346626.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Nov 03 2021