login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348914
a(n) = Product_{i=n..n+4} A000045(i) mod Sum_{i=n..n+4} A000045(i).
0
0, 6, 12, 20, 10, 57, 24, 186, 77, 120, 68, 74, 2121, 1074, 110, 6104, 10276, 15765, 24811, 27170, 18404, 106578, 50572, 429823, 632905, 639390, 182833, 1064394, 4938336, 4868130, 3498459, 3117542, 15919106, 31939971, 60913680, 64944336, 133285372, 23346462, 201271610, 786480230, 582166718
OFFSET
0,2
COMMENTS
It appears that the only Fibonacci number in the sequence is a(0) = 0.
EXAMPLE
a(3) = (F(3)*F(4)*F(5)*F(6)*F(7)) mod (F(3)+F(4)+F(5)+F(6)+F(7)) = 3120 mod 31 = 20.
MAPLE
L:= <0, 1, 1, 2, 3>: R:= NULL:
for i from 1 to 100 do
R:= R, convert(L, `*`) mod convert(L, `+`);
L[1..4]:= L[2..5];
L[5]:= L[3]+L[4];
od:
R;
MATHEMATICA
a[n_]:=Product[Fibonacci@i, {i, n, n+4}]~Mod~Sum[Fibonacci@i, {i, n, n+4}]; Array[a, 41, 0] (* Giorgos Kalogeropoulos, Nov 03 2021 *)
CROSSREFS
Sequence in context: A365695 A233586 A332543 * A235268 A354931 A105455
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 03 2021
STATUS
approved