Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Nov 03 2021 22:19:48
%S 0,6,12,20,10,57,24,186,77,120,68,74,2121,1074,110,6104,10276,15765,
%T 24811,27170,18404,106578,50572,429823,632905,639390,182833,1064394,
%U 4938336,4868130,3498459,3117542,15919106,31939971,60913680,64944336,133285372,23346462,201271610,786480230,582166718
%N a(n) = Product_{i=n..n+4} A000045(i) mod Sum_{i=n..n+4} A000045(i).
%C It appears that the only Fibonacci number in the sequence is a(0) = 0.
%e a(3) = (F(3)*F(4)*F(5)*F(6)*F(7)) mod (F(3)+F(4)+F(5)+F(6)+F(7)) = 3120 mod 31 = 20.
%p L:= <0,1,1,2,3>: R:= NULL:
%p for i from 1 to 100 do
%p R:= R, convert(L,`*`) mod convert(L,`+`);
%p L[1..4]:= L[2..5];
%p L[5]:= L[3]+L[4];
%p od:
%p R;
%t a[n_]:=Product[Fibonacci@i,{i,n,n+4}]~Mod~Sum[Fibonacci@i,{i,n,n+4}];Array[a,41,0] (* _Giorgos Kalogeropoulos_, Nov 03 2021 *)
%Y Cf. A000045, A001060.
%K nonn
%O 0,2
%A _J. M. Bergot_ and _Robert Israel_, Nov 03 2021