OFFSET
0,6
COMMENTS
Row reverse appears to be A111184. - Peter Bala, Feb 17 2017
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
Sum_{k=0..n} x^(n-k)*T(n,k) = A111528(x, n); see A000142, A003319, A111529, A111530, A111531, A111532, A111533 for x = 0, 1, 2, 3, 4, 5, 6. - Philippe Deléham, Aug 09 2005
Sum_{k=0..n} T(n,k)*3^k = A107716(n). - Philippe Deléham, Aug 15 2005
Sum_{k=0..n} T(n,k)*2^k = A000698(n+1). - Philippe Deléham, Aug 15 2005
G.f.: A(x, y) = (1/x)*(1 - 1/(1 + Sum_{n>=1} [Product_{k=0..n-1}(1+k*y)]*x^n )). - Paul D. Hanna, Aug 16 2005
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 6, 6;
0, 1, 12, 34, 24;
0, 1, 20, 110, 210, 120;
0, 1, 30, 270, 974, 1452, 720; ...
MATHEMATICA
m = 10;
gf = (1/x)*(1-1/(1+Sum[Product[(1+k*y), {k, 0, n-1}]*x^n, {n, 1, m}]));
CoefficientList[#, y]& /@ CoefficientList[gf + O[x]^m, x] // Flatten (* Jean-François Alcover, May 11 2019 *)
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, if(n==0, 1, if(k==0, 0, polcoeff(polcoeff( (1-1/(1+sum(m=1, n+k, prod(j=0, m-1, 1+j*y)*x^m)))/x +x*O(x^n), n, x)+y*O(y^k), k, y)))) \\ Paul D. Hanna, Aug 16 2005
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Jan 11 2004
STATUS
approved