Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Jan 21 2020 10:07:25
%S 1,0,1,0,1,2,0,1,6,6,0,1,12,34,24,0,1,20,110,210,120,0,1,30,270,974,
%T 1452,720,0,1,42,560,3248,8946,11256,5040,0,1,56,1036,8792,38338,
%U 87504,97296,40320,0,1,72,1764,20580,129834,463050,920184,930960,362880
%N Triangle T(n,k), read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938.
%C Row reverse appears to be A111184. - _Peter Bala_, Feb 17 2017
%H Alois P. Heinz, <a href="/A089949/b089949.txt">Rows n = 0..140, flattened</a>
%F Sum_{k=0..n} x^(n-k)*T(n,k) = A111528(x, n); see A000142, A003319, A111529, A111530, A111531, A111532, A111533 for x = 0, 1, 2, 3, 4, 5, 6. - _Philippe Deléham_, Aug 09 2005
%F Sum_{k=0..n} T(n,k)*3^k = A107716(n). - _Philippe Deléham_, Aug 15 2005
%F Sum_{k=0..n} T(n,k)*2^k = A000698(n+1). - _Philippe Deléham_, Aug 15 2005
%F G.f.: A(x, y) = (1/x)*(1 - 1/(1 + Sum_{n>=1} [Product_{k=0..n-1}(1+k*y)]*x^n )). - _Paul D. Hanna_, Aug 16 2005
%e Triangle begins:
%e 1;
%e 0, 1;
%e 0, 1, 2;
%e 0, 1, 6, 6;
%e 0, 1, 12, 34, 24;
%e 0, 1, 20, 110, 210, 120;
%e 0, 1, 30, 270, 974, 1452, 720; ...
%t m = 10;
%t gf = (1/x)*(1-1/(1+Sum[Product[(1+k*y), {k, 0, n-1}]*x^n, {n, 1, m}]));
%t CoefficientList[#, y]& /@ CoefficientList[gf + O[x]^m, x] // Flatten (* _Jean-François Alcover_, May 11 2019 *)
%o (PARI) T(n,k)=if(n<k || k<0,0,if(n==0,1,if(k==0,0,polcoeff(polcoeff( (1-1/(1+sum(m=1,n+k,prod(j=0,m-1,1+j*y)*x^m)))/x +x*O(x^n),n,x)+y*O(y^k),k,y)))) \\ _Paul D. Hanna_, Aug 16 2005
%Y Cf. A084938, A111184.
%Y Diagonals: A000007, A000012, A002378, A000142.
%Y Row sums: A003319.
%K easy,nonn,tabl
%O 0,6
%A _Philippe Deléham_, Jan 11 2004