login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089951
Numbers having the same leading decimal digits as their squares.
6
0, 1, 10, 11, 12, 13, 14, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 895
OFFSET
1,3
COMMENTS
A000030(a(n)) = A002993(a(n)) = A000030(A000290(a(n))).
LINKS
FORMULA
A number n is in the sequence iff n = 0 or n/10^floor(log_10(n)) lies in one of the half-open intervals [1, sqrt(2)), [sqrt(80), 9) or [sqrt(90), 10). - David W. Wilson, May 29 2008
EXAMPLE
895*895 = 801025, therefore 895 is a term: a(55)=895.
MAPLE
F:= proc(d) $10^d .. floor(sqrt(2)*10^d), $ ceil(sqrt(80)*10^d) .. 9*10^d - 1, $ ceil(sqrt(90)*10^d) .. 10^(d+1)-1 end proc:
0, F(0), F(1), F(2), F(3); # Robert Israel, Mar 18 2015
MATHEMATICA
d[n_] := IntegerDigits[n]; Select[Range[895],
First[d[#]] == First[d[#^2]] &] (* Jayanta Basu, Jun 03 2013 *)
PROG
(PARI) a(n)={my(v = [1, sqrt(80), sqrt(90)], w=[(k)->10^k * ((sqrt(2) - 1))\1 + 1, (k)->9 * 10^k - ceil(sqrt(80) * 10^k), (k)->10 * 10^k - ceil(sqrt(90) * 10^k)], i = 1, k = 0); if(n==1, 0, n--; while(n>w[i](k), n-=w[i](k); i++; if(i == 4, i = 1; k++)); ceil(v[i]*10^k)+n-1)} \\ David A. Corneth, Feb 26 2015
(PARI) isok(n) = (n == 0) || (digits(n)[1] == digits(n^2)[1]); \\ Michel Marcus, Mar 18 2015
(Haskell)
a089951 n = a089951_list !! (n-1)
a089951_list = [x | x <- [0..], a000030 x == a000030 (x ^ 2)]
-- Reinhard Zumkeller, Apr 01 2015
CROSSREFS
Cf. A018834.
Cf. A144582. - Reinhard Zumkeller, Aug 17 2008
Cf. A000030, A002993, A000290, A256523 (subsequence).
Sequence in context: A228774 A073527 A008707 * A058945 A270040 A339093
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Jan 12 2004
STATUS
approved